Evaluate
x-y-\frac{25}{8}
Expand
x-y-\frac{25}{8}
Share
Copied to clipboard
\left(x-y+\frac{1}{2}\right)^{2}-\left(x-y\right)^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Multiply x-y+\frac{1}{2} and x-y+\frac{1}{2} to get \left(x-y+\frac{1}{2}\right)^{2}.
x^{2}-2xy+x+y^{2}-y+\frac{1}{4}-\left(x-y\right)^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Square x-y+\frac{1}{2}.
x^{2}-2xy+x+y^{2}-y+\frac{1}{4}-\left(x^{2}-2xy+y^{2}\right)+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
x^{2}-2xy+x+y^{2}-y+\frac{1}{4}-x^{2}+2xy-y^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
To find the opposite of x^{2}-2xy+y^{2}, find the opposite of each term.
-2xy+x+y^{2}-y+\frac{1}{4}+2xy-y^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Combine x^{2} and -x^{2} to get 0.
x+y^{2}-y+\frac{1}{4}-y^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Combine -2xy and 2xy to get 0.
x-y+\frac{1}{4}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Combine y^{2} and -y^{2} to get 0.
x-y+\frac{1}{4}+\frac{1}{27}\left(x^{2}\right)^{3}-\frac{1}{2}\left(x^{2}\right)^{2}+\frac{9}{4}x^{2}-\frac{27}{8}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}.
x-y+\frac{1}{4}+\frac{1}{27}x^{6}-\frac{1}{2}\left(x^{2}\right)^{2}+\frac{9}{4}x^{2}-\frac{27}{8}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
x-y+\frac{1}{4}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-\frac{27}{8}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x-y-\frac{25}{8}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Subtract \frac{27}{8} from \frac{1}{4} to get -\frac{25}{8}.
x-y-\frac{25}{8}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-\left(\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}\right)
Use the distributive property to multiply x^{2} by \frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}.
x-y-\frac{25}{8}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-\frac{1}{27}x^{6}+\frac{1}{2}x^{4}-\frac{9}{4}x^{2}
To find the opposite of \frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}, find the opposite of each term.
x-y-\frac{25}{8}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}+\frac{1}{2}x^{4}-\frac{9}{4}x^{2}
Combine \frac{1}{27}x^{6} and -\frac{1}{27}x^{6} to get 0.
x-y-\frac{25}{8}+\frac{9}{4}x^{2}-\frac{9}{4}x^{2}
Combine -\frac{1}{2}x^{4} and \frac{1}{2}x^{4} to get 0.
x-y-\frac{25}{8}
Combine \frac{9}{4}x^{2} and -\frac{9}{4}x^{2} to get 0.
\left(x-y+\frac{1}{2}\right)^{2}-\left(x-y\right)^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Multiply x-y+\frac{1}{2} and x-y+\frac{1}{2} to get \left(x-y+\frac{1}{2}\right)^{2}.
x^{2}-2xy+x+y^{2}-y+\frac{1}{4}-\left(x-y\right)^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Square x-y+\frac{1}{2}.
x^{2}-2xy+x+y^{2}-y+\frac{1}{4}-\left(x^{2}-2xy+y^{2}\right)+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
x^{2}-2xy+x+y^{2}-y+\frac{1}{4}-x^{2}+2xy-y^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
To find the opposite of x^{2}-2xy+y^{2}, find the opposite of each term.
-2xy+x+y^{2}-y+\frac{1}{4}+2xy-y^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Combine x^{2} and -x^{2} to get 0.
x+y^{2}-y+\frac{1}{4}-y^{2}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Combine -2xy and 2xy to get 0.
x-y+\frac{1}{4}+\left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Combine y^{2} and -y^{2} to get 0.
x-y+\frac{1}{4}+\frac{1}{27}\left(x^{2}\right)^{3}-\frac{1}{2}\left(x^{2}\right)^{2}+\frac{9}{4}x^{2}-\frac{27}{8}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(\frac{1}{3}x^{2}-\frac{3}{2}\right)^{3}.
x-y+\frac{1}{4}+\frac{1}{27}x^{6}-\frac{1}{2}\left(x^{2}\right)^{2}+\frac{9}{4}x^{2}-\frac{27}{8}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
x-y+\frac{1}{4}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-\frac{27}{8}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x-y-\frac{25}{8}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-x^{2}\left(\frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}\right)
Subtract \frac{27}{8} from \frac{1}{4} to get -\frac{25}{8}.
x-y-\frac{25}{8}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-\left(\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}\right)
Use the distributive property to multiply x^{2} by \frac{1}{27}x^{4}-\frac{1}{2}x^{2}+\frac{9}{4}.
x-y-\frac{25}{8}+\frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}-\frac{1}{27}x^{6}+\frac{1}{2}x^{4}-\frac{9}{4}x^{2}
To find the opposite of \frac{1}{27}x^{6}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}, find the opposite of each term.
x-y-\frac{25}{8}-\frac{1}{2}x^{4}+\frac{9}{4}x^{2}+\frac{1}{2}x^{4}-\frac{9}{4}x^{2}
Combine \frac{1}{27}x^{6} and -\frac{1}{27}x^{6} to get 0.
x-y-\frac{25}{8}+\frac{9}{4}x^{2}-\frac{9}{4}x^{2}
Combine -\frac{1}{2}x^{4} and \frac{1}{2}x^{4} to get 0.
x-y-\frac{25}{8}
Combine \frac{9}{4}x^{2} and -\frac{9}{4}x^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}