Solve for k
k=-\frac{x^{2}-10}{2\left(2-x\right)}
x\neq 2
Solve for x
x=\sqrt{k^{2}-4k+10}+k
x=-\sqrt{k^{2}-4k+10}+k
Graph
Share
Copied to clipboard
x^{2}-2xk+k^{2}-\left(k-2\right)^{2}=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}-\left(k^{2}-4k+4\right)=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-2\right)^{2}.
x^{2}-2xk+k^{2}-k^{2}+4k-4=6
To find the opposite of k^{2}-4k+4, find the opposite of each term.
x^{2}-2xk+4k-4=6
Combine k^{2} and -k^{2} to get 0.
-2xk+4k-4=6-x^{2}
Subtract x^{2} from both sides.
-2xk+4k=6-x^{2}+4
Add 4 to both sides.
-2xk+4k=10-x^{2}
Add 6 and 4 to get 10.
\left(-2x+4\right)k=10-x^{2}
Combine all terms containing k.
\left(4-2x\right)k=10-x^{2}
The equation is in standard form.
\frac{\left(4-2x\right)k}{4-2x}=\frac{10-x^{2}}{4-2x}
Divide both sides by -2x+4.
k=\frac{10-x^{2}}{4-2x}
Dividing by -2x+4 undoes the multiplication by -2x+4.
k=\frac{10-x^{2}}{2\left(2-x\right)}
Divide 10-x^{2} by -2x+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}