Skip to main content
Solve for k
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2xk+k^{2}-\left(k-2\right)^{2}=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}-\left(k^{2}-4k+4\right)=6
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-2\right)^{2}.
x^{2}-2xk+k^{2}-k^{2}+4k-4=6
To find the opposite of k^{2}-4k+4, find the opposite of each term.
x^{2}-2xk+4k-4=6
Combine k^{2} and -k^{2} to get 0.
-2xk+4k-4=6-x^{2}
Subtract x^{2} from both sides.
-2xk+4k=6-x^{2}+4
Add 4 to both sides.
-2xk+4k=10-x^{2}
Add 6 and 4 to get 10.
\left(-2x+4\right)k=10-x^{2}
Combine all terms containing k.
\left(4-2x\right)k=10-x^{2}
The equation is in standard form.
\frac{\left(4-2x\right)k}{4-2x}=\frac{10-x^{2}}{4-2x}
Divide both sides by -2x+4.
k=\frac{10-x^{2}}{4-2x}
Dividing by -2x+4 undoes the multiplication by -2x+4.
k=\frac{10-x^{2}}{2\left(2-x\right)}
Divide 10-x^{2} by -2x+4.