Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2xk+k^{2}=k^{2}+2k+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}-k^{2}=2k+1
Subtract k^{2} from both sides.
x^{2}-2xk=2k+1
Combine k^{2} and -k^{2} to get 0.
x^{2}-2xk-2k=1
Subtract 2k from both sides.
-2xk-2k=1-x^{2}
Subtract x^{2} from both sides.
\left(-2x-2\right)k=1-x^{2}
Combine all terms containing k.
\frac{\left(-2x-2\right)k}{-2x-2}=\frac{1-x^{2}}{-2x-2}
Divide both sides by -2x-2.
k=\frac{1-x^{2}}{-2x-2}
Dividing by -2x-2 undoes the multiplication by -2x-2.
k=\frac{x-1}{2}
Divide -x^{2}+1 by -2x-2.
x^{2}-2xk+k^{2}=k^{2}+2k+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}-k^{2}=2k+1
Subtract k^{2} from both sides.
x^{2}-2xk=2k+1
Combine k^{2} and -k^{2} to get 0.
x^{2}-2xk-2k=1
Subtract 2k from both sides.
-2xk-2k=1-x^{2}
Subtract x^{2} from both sides.
\left(-2x-2\right)k=1-x^{2}
Combine all terms containing k.
\frac{\left(-2x-2\right)k}{-2x-2}=\frac{1-x^{2}}{-2x-2}
Divide both sides by -2x-2.
k=\frac{1-x^{2}}{-2x-2}
Dividing by -2x-2 undoes the multiplication by -2x-2.
k=\frac{x-1}{2}
Divide -x^{2}+1 by -2x-2.