Solve for k (complex solution)
k=-\frac{x^{2}}{4x^{2}+2x+1}
x\neq \frac{-1+\sqrt{3}i}{4}\text{ and }x\neq \frac{-\sqrt{3}i-1}{4}
Solve for k
k=-\frac{x^{2}}{4x^{2}+2x+1}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{-k\left(3k+1\right)}-k}{4k+1}\text{; }x=-\frac{\sqrt{-k\left(3k+1\right)}+k}{4k+1}\text{, }&k\neq -\frac{1}{4}\\x=-\frac{1}{2}\text{, }&k=-\frac{1}{4}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{-k\left(3k+1\right)}-k}{4k+1}\text{; }x=-\frac{\sqrt{-k\left(3k+1\right)}+k}{4k+1}\text{, }&k\neq -\frac{1}{4}\text{ and }k\leq 0\text{ and }k\geq -\frac{1}{3}\\x=-\frac{1}{2}\text{, }&k=-\frac{1}{4}\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}-2xk+k^{2}+k\left(2x+1\right)^{2}=k^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}+k\left(4x^{2}+4x+1\right)=k^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-2xk+k^{2}+4kx^{2}+4kx+k=k^{2}
Use the distributive property to multiply k by 4x^{2}+4x+1.
x^{2}+2xk+k^{2}+4kx^{2}+k=k^{2}
Combine -2xk and 4kx to get 2xk.
x^{2}+2xk+k^{2}+4kx^{2}+k-k^{2}=0
Subtract k^{2} from both sides.
x^{2}+2xk+4kx^{2}+k=0
Combine k^{2} and -k^{2} to get 0.
2xk+4kx^{2}+k=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(2x+4x^{2}+1\right)k=-x^{2}
Combine all terms containing k.
\left(4x^{2}+2x+1\right)k=-x^{2}
The equation is in standard form.
\frac{\left(4x^{2}+2x+1\right)k}{4x^{2}+2x+1}=-\frac{x^{2}}{4x^{2}+2x+1}
Divide both sides by 2x+4x^{2}+1.
k=-\frac{x^{2}}{4x^{2}+2x+1}
Dividing by 2x+4x^{2}+1 undoes the multiplication by 2x+4x^{2}+1.
x^{2}-2xk+k^{2}+k\left(2x+1\right)^{2}=k^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}+k\left(4x^{2}+4x+1\right)=k^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-2xk+k^{2}+4kx^{2}+4kx+k=k^{2}
Use the distributive property to multiply k by 4x^{2}+4x+1.
x^{2}+2xk+k^{2}+4kx^{2}+k=k^{2}
Combine -2xk and 4kx to get 2xk.
x^{2}+2xk+k^{2}+4kx^{2}+k-k^{2}=0
Subtract k^{2} from both sides.
x^{2}+2xk+4kx^{2}+k=0
Combine k^{2} and -k^{2} to get 0.
2xk+4kx^{2}+k=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(2x+4x^{2}+1\right)k=-x^{2}
Combine all terms containing k.
\left(4x^{2}+2x+1\right)k=-x^{2}
The equation is in standard form.
\frac{\left(4x^{2}+2x+1\right)k}{4x^{2}+2x+1}=-\frac{x^{2}}{4x^{2}+2x+1}
Divide both sides by 2x+4x^{2}+1.
k=-\frac{x^{2}}{4x^{2}+2x+1}
Dividing by 2x+4x^{2}+1 undoes the multiplication by 2x+4x^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}