Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2xk+k^{2}+k\left(2x+1\right)^{2}=k^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}+k\left(4x^{2}+4x+1\right)=k^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-2xk+k^{2}+4kx^{2}+4kx+k=k^{2}
Use the distributive property to multiply k by 4x^{2}+4x+1.
x^{2}+2xk+k^{2}+4kx^{2}+k=k^{2}
Combine -2xk and 4kx to get 2xk.
x^{2}+2xk+k^{2}+4kx^{2}+k-k^{2}=0
Subtract k^{2} from both sides.
x^{2}+2xk+4kx^{2}+k=0
Combine k^{2} and -k^{2} to get 0.
2xk+4kx^{2}+k=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(2x+4x^{2}+1\right)k=-x^{2}
Combine all terms containing k.
\left(4x^{2}+2x+1\right)k=-x^{2}
The equation is in standard form.
\frac{\left(4x^{2}+2x+1\right)k}{4x^{2}+2x+1}=-\frac{x^{2}}{4x^{2}+2x+1}
Divide both sides by 2x+4x^{2}+1.
k=-\frac{x^{2}}{4x^{2}+2x+1}
Dividing by 2x+4x^{2}+1 undoes the multiplication by 2x+4x^{2}+1.
x^{2}-2xk+k^{2}+k\left(2x+1\right)^{2}=k^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-k\right)^{2}.
x^{2}-2xk+k^{2}+k\left(4x^{2}+4x+1\right)=k^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-2xk+k^{2}+4kx^{2}+4kx+k=k^{2}
Use the distributive property to multiply k by 4x^{2}+4x+1.
x^{2}+2xk+k^{2}+4kx^{2}+k=k^{2}
Combine -2xk and 4kx to get 2xk.
x^{2}+2xk+k^{2}+4kx^{2}+k-k^{2}=0
Subtract k^{2} from both sides.
x^{2}+2xk+4kx^{2}+k=0
Combine k^{2} and -k^{2} to get 0.
2xk+4kx^{2}+k=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(2x+4x^{2}+1\right)k=-x^{2}
Combine all terms containing k.
\left(4x^{2}+2x+1\right)k=-x^{2}
The equation is in standard form.
\frac{\left(4x^{2}+2x+1\right)k}{4x^{2}+2x+1}=-\frac{x^{2}}{4x^{2}+2x+1}
Divide both sides by 2x+4x^{2}+1.
k=-\frac{x^{2}}{4x^{2}+2x+1}
Dividing by 2x+4x^{2}+1 undoes the multiplication by 2x+4x^{2}+1.