Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{h-1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&h=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{h-1}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&h=1\end{matrix}\right.
Solve for h
h=1
h=2x+1
Graph
Share
Copied to clipboard
x^{2}-h^{2}+\left(h+1\right)^{2}=\left(x-h\right)^{2}+2\left(x+1\right)
Consider \left(x-h\right)\left(x+h\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-h^{2}+h^{2}+2h+1=\left(x-h\right)^{2}+2\left(x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(h+1\right)^{2}.
x^{2}+2h+1=\left(x-h\right)^{2}+2\left(x+1\right)
Combine -h^{2} and h^{2} to get 0.
x^{2}+2h+1=x^{2}-2xh+h^{2}+2\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-h\right)^{2}.
x^{2}+2h+1=x^{2}-2xh+h^{2}+2x+2
Use the distributive property to multiply 2 by x+1.
x^{2}+2h+1-x^{2}=-2xh+h^{2}+2x+2
Subtract x^{2} from both sides.
2h+1=-2xh+h^{2}+2x+2
Combine x^{2} and -x^{2} to get 0.
-2xh+h^{2}+2x+2=2h+1
Swap sides so that all variable terms are on the left hand side.
-2xh+2x+2=2h+1-h^{2}
Subtract h^{2} from both sides.
-2xh+2x=2h+1-h^{2}-2
Subtract 2 from both sides.
-2xh+2x=2h-1-h^{2}
Subtract 2 from 1 to get -1.
\left(-2h+2\right)x=2h-1-h^{2}
Combine all terms containing x.
\left(2-2h\right)x=-h^{2}+2h-1
The equation is in standard form.
\frac{\left(2-2h\right)x}{2-2h}=-\frac{\left(h-1\right)^{2}}{2-2h}
Divide both sides by -2h+2.
x=-\frac{\left(h-1\right)^{2}}{2-2h}
Dividing by -2h+2 undoes the multiplication by -2h+2.
x=\frac{h-1}{2}
Divide -\left(h-1\right)^{2} by -2h+2.
x^{2}-h^{2}+\left(h+1\right)^{2}=\left(x-h\right)^{2}+2\left(x+1\right)
Consider \left(x-h\right)\left(x+h\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-h^{2}+h^{2}+2h+1=\left(x-h\right)^{2}+2\left(x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(h+1\right)^{2}.
x^{2}+2h+1=\left(x-h\right)^{2}+2\left(x+1\right)
Combine -h^{2} and h^{2} to get 0.
x^{2}+2h+1=x^{2}-2xh+h^{2}+2\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-h\right)^{2}.
x^{2}+2h+1=x^{2}-2xh+h^{2}+2x+2
Use the distributive property to multiply 2 by x+1.
x^{2}+2h+1-x^{2}=-2xh+h^{2}+2x+2
Subtract x^{2} from both sides.
2h+1=-2xh+h^{2}+2x+2
Combine x^{2} and -x^{2} to get 0.
-2xh+h^{2}+2x+2=2h+1
Swap sides so that all variable terms are on the left hand side.
-2xh+2x+2=2h+1-h^{2}
Subtract h^{2} from both sides.
-2xh+2x=2h+1-h^{2}-2
Subtract 2 from both sides.
-2xh+2x=2h-1-h^{2}
Subtract 2 from 1 to get -1.
\left(-2h+2\right)x=2h-1-h^{2}
Combine all terms containing x.
\left(2-2h\right)x=-h^{2}+2h-1
The equation is in standard form.
\frac{\left(2-2h\right)x}{2-2h}=-\frac{\left(h-1\right)^{2}}{2-2h}
Divide both sides by -2h+2.
x=-\frac{\left(h-1\right)^{2}}{2-2h}
Dividing by -2h+2 undoes the multiplication by -2h+2.
x=\frac{h-1}{2}
Divide -\left(h-1\right)^{2} by -2h+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}