Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-xb-ax+ab=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ab=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ab=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ab+ax=x^{2}-bx+ab
Add ax to both sides.
x^{2}-xb+ab=x^{2}-bx+ab
Combine -ax and ax to get 0.
x^{2}-xb+ab-ab=x^{2}-bx
Subtract ab from both sides.
x^{2}-xb=x^{2}-bx
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
x^{2}-xb-ax+ba=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ba=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ba=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ba+bx=x^{2}-ax+ab
Add bx to both sides.
x^{2}-ax+ba=x^{2}-ax+ab
Combine -xb and bx to get 0.
x^{2}-ax+ba-ab=x^{2}-ax
Subtract ab from both sides.
x^{2}-ax=x^{2}-ax
Combine ba and -ab to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
x^{2}-xb-ax+ab=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ab=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ab=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ab+ax=x^{2}-bx+ab
Add ax to both sides.
x^{2}-xb+ab=x^{2}-bx+ab
Combine -ax and ax to get 0.
x^{2}-xb+ab-ab=x^{2}-bx
Subtract ab from both sides.
x^{2}-xb=x^{2}-bx
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
x^{2}-xb-ax+ba=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ba=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ba=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ba+bx=x^{2}-ax+ab
Add bx to both sides.
x^{2}-ax+ba=x^{2}-ax+ab
Combine -xb and bx to get 0.
x^{2}-ax+ba-ab=x^{2}-ax
Subtract ab from both sides.
x^{2}-ax=x^{2}-ax
Combine ba and -ab to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.