Solve for a (complex solution)
a\in \mathrm{C}
Solve for b (complex solution)
b\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Solve for b
b\in \mathrm{R}
Graph
Share
Copied to clipboard
x^{2}-xb-ax+ab=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ab=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ab=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ab+ax=x^{2}-bx+ab
Add ax to both sides.
x^{2}-xb+ab=x^{2}-bx+ab
Combine -ax and ax to get 0.
x^{2}-xb+ab-ab=x^{2}-bx
Subtract ab from both sides.
x^{2}-xb=x^{2}-bx
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
x^{2}-xb-ax+ba=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ba=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ba=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ba+bx=x^{2}-ax+ab
Add bx to both sides.
x^{2}-ax+ba=x^{2}-ax+ab
Combine -xb and bx to get 0.
x^{2}-ax+ba-ab=x^{2}-ax
Subtract ab from both sides.
x^{2}-ax=x^{2}-ax
Combine ba and -ab to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
x^{2}-xb-ax+ab=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ab=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ab=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ab+ax=x^{2}-bx+ab
Add ax to both sides.
x^{2}-xb+ab=x^{2}-bx+ab
Combine -ax and ax to get 0.
x^{2}-xb+ab-ab=x^{2}-bx
Subtract ab from both sides.
x^{2}-xb=x^{2}-bx
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
x^{2}-xb-ax+ba=x^{2}-\left(a+b\right)x+ab
Use the distributive property to multiply x-a by x-b.
x^{2}-xb-ax+ba=x^{2}-\left(ax+bx\right)+ab
Use the distributive property to multiply a+b by x.
x^{2}-xb-ax+ba=x^{2}-ax-bx+ab
To find the opposite of ax+bx, find the opposite of each term.
x^{2}-xb-ax+ba+bx=x^{2}-ax+ab
Add bx to both sides.
x^{2}-ax+ba=x^{2}-ax+ab
Combine -xb and bx to get 0.
x^{2}-ax+ba-ab=x^{2}-ax
Subtract ab from both sides.
x^{2}-ax=x^{2}-ax
Combine ba and -ab to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}