Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
xb-ax-ab=3bx-x^{2}
Subtract x^{2} from both sides.
-ax-ab=3bx-x^{2}-xb
Subtract xb from both sides.
-ax-ab=2bx-x^{2}
Combine 3bx and -xb to get 2bx.
\left(-x-b\right)a=2bx-x^{2}
Combine all terms containing a.
\frac{\left(-x-b\right)a}{-x-b}=\frac{x\left(2b-x\right)}{-x-b}
Divide both sides by -x-b.
a=\frac{x\left(2b-x\right)}{-x-b}
Dividing by -x-b undoes the multiplication by -x-b.
a=-\frac{x\left(2b-x\right)}{x+b}
Divide x\left(2b-x\right) by -x-b.
x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
x^{2}+xb-ax-ab-3bx=0
Subtract 3bx from both sides.
x^{2}-2xb-ax-ab=0
Combine xb and -3bx to get -2xb.
-2xb-ax-ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2xb-ab=-x^{2}+ax
Add ax to both sides.
\left(-2x-a\right)b=-x^{2}+ax
Combine all terms containing b.
\left(-2x-a\right)b=ax-x^{2}
The equation is in standard form.
\frac{\left(-2x-a\right)b}{-2x-a}=\frac{x\left(a-x\right)}{-2x-a}
Divide both sides by -2x-a.
b=\frac{x\left(a-x\right)}{-2x-a}
Dividing by -2x-a undoes the multiplication by -2x-a.
b=-\frac{x\left(a-x\right)}{2x+a}
Divide x\left(-x+a\right) by -2x-a.
x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
xb-ax-ab=3bx-x^{2}
Subtract x^{2} from both sides.
-ax-ab=3bx-x^{2}-xb
Subtract xb from both sides.
-ax-ab=2bx-x^{2}
Combine 3bx and -xb to get 2bx.
\left(-x-b\right)a=2bx-x^{2}
Combine all terms containing a.
\frac{\left(-x-b\right)a}{-x-b}=\frac{x\left(2b-x\right)}{-x-b}
Divide both sides by -x-b.
a=\frac{x\left(2b-x\right)}{-x-b}
Dividing by -x-b undoes the multiplication by -x-b.
a=-\frac{x\left(2b-x\right)}{x+b}
Divide x\left(2b-x\right) by -x-b.
x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
x^{2}+xb-ax-ab-3bx=0
Subtract 3bx from both sides.
x^{2}-2xb-ax-ab=0
Combine xb and -3bx to get -2xb.
-2xb-ax-ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2xb-ab=-x^{2}+ax
Add ax to both sides.
\left(-2x-a\right)b=-x^{2}+ax
Combine all terms containing b.
\left(-2x-a\right)b=ax-x^{2}
The equation is in standard form.
\frac{\left(-2x-a\right)b}{-2x-a}=\frac{x\left(a-x\right)}{-2x-a}
Divide both sides by -2x-a.
b=\frac{x\left(a-x\right)}{-2x-a}
Dividing by -2x-a undoes the multiplication by -2x-a.
b=-\frac{x\left(a-x\right)}{2x+a}
Divide x\left(-x+a\right) by -2x-a.