Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{x\left(x-2b\right)}{x+b}\text{, }&x\neq -b\\a\in \mathrm{C}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{x\left(x-a\right)}{2x+a}\text{, }&x\neq -\frac{a}{2}\\b\in \mathrm{C}\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{x\left(x-2b\right)}{x+b}\text{, }&x\neq -b\\a\in \mathrm{R}\text{, }&x=0\text{ and }b=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{x\left(x-a\right)}{2x+a}\text{, }&x\neq -\frac{a}{2}\\b\in \mathrm{R}\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
xb-ax-ab=3bx-x^{2}
Subtract x^{2} from both sides.
-ax-ab=3bx-x^{2}-xb
Subtract xb from both sides.
-ax-ab=2bx-x^{2}
Combine 3bx and -xb to get 2bx.
\left(-x-b\right)a=2bx-x^{2}
Combine all terms containing a.
\frac{\left(-x-b\right)a}{-x-b}=\frac{x\left(2b-x\right)}{-x-b}
Divide both sides by -x-b.
a=\frac{x\left(2b-x\right)}{-x-b}
Dividing by -x-b undoes the multiplication by -x-b.
a=-\frac{x\left(2b-x\right)}{x+b}
Divide x\left(2b-x\right) by -x-b.
x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
x^{2}+xb-ax-ab-3bx=0
Subtract 3bx from both sides.
x^{2}-2xb-ax-ab=0
Combine xb and -3bx to get -2xb.
-2xb-ax-ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2xb-ab=-x^{2}+ax
Add ax to both sides.
\left(-2x-a\right)b=-x^{2}+ax
Combine all terms containing b.
\left(-2x-a\right)b=ax-x^{2}
The equation is in standard form.
\frac{\left(-2x-a\right)b}{-2x-a}=\frac{x\left(a-x\right)}{-2x-a}
Divide both sides by -2x-a.
b=\frac{x\left(a-x\right)}{-2x-a}
Dividing by -2x-a undoes the multiplication by -2x-a.
b=-\frac{x\left(a-x\right)}{2x+a}
Divide x\left(-x+a\right) by -2x-a.
x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
xb-ax-ab=3bx-x^{2}
Subtract x^{2} from both sides.
-ax-ab=3bx-x^{2}-xb
Subtract xb from both sides.
-ax-ab=2bx-x^{2}
Combine 3bx and -xb to get 2bx.
\left(-x-b\right)a=2bx-x^{2}
Combine all terms containing a.
\frac{\left(-x-b\right)a}{-x-b}=\frac{x\left(2b-x\right)}{-x-b}
Divide both sides by -x-b.
a=\frac{x\left(2b-x\right)}{-x-b}
Dividing by -x-b undoes the multiplication by -x-b.
a=-\frac{x\left(2b-x\right)}{x+b}
Divide x\left(2b-x\right) by -x-b.
x^{2}+xb-ax-ab=3bx
Use the distributive property to multiply x-a by x+b.
x^{2}+xb-ax-ab-3bx=0
Subtract 3bx from both sides.
x^{2}-2xb-ax-ab=0
Combine xb and -3bx to get -2xb.
-2xb-ax-ab=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2xb-ab=-x^{2}+ax
Add ax to both sides.
\left(-2x-a\right)b=-x^{2}+ax
Combine all terms containing b.
\left(-2x-a\right)b=ax-x^{2}
The equation is in standard form.
\frac{\left(-2x-a\right)b}{-2x-a}=\frac{x\left(a-x\right)}{-2x-a}
Divide both sides by -2x-a.
b=\frac{x\left(a-x\right)}{-2x-a}
Dividing by -2x-a undoes the multiplication by -2x-a.
b=-\frac{x\left(a-x\right)}{2x+a}
Divide x\left(-x+a\right) by -2x-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}