Solve for b
b=-\left(x-a\right)^{2}+x
Solve for a (complex solution)
a=x+\sqrt{x-b}
a=x-\sqrt{x-b}
Solve for a
a=x+\sqrt{x-b}
a=x-\sqrt{x-b}\text{, }x\geq b
Graph
Share
Copied to clipboard
x^{2}-2xa+a^{2}=x-b
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x-b=x^{2}-2xa+a^{2}
Swap sides so that all variable terms are on the left hand side.
-b=x^{2}-2xa+a^{2}-x
Subtract x from both sides.
-b=x^{2}-2ax-x+a^{2}
The equation is in standard form.
\frac{-b}{-1}=\frac{\left(x-a\right)^{2}-x}{-1}
Divide both sides by -1.
b=\frac{\left(x-a\right)^{2}-x}{-1}
Dividing by -1 undoes the multiplication by -1.
b=-\left(x-a\right)^{2}+x
Divide -x+\left(x-a\right)^{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}