Solve for x
x=\frac{a^{2}+33}{2\left(a-2\right)}
a\neq 2
Solve for a (complex solution)
a=\sqrt{x^{2}-4x-33}+x
a=-\sqrt{x^{2}-4x-33}+x
Solve for a
a=\sqrt{x^{2}-4x-33}+x
a=-\sqrt{x^{2}-4x-33}+x\text{, }x\geq \sqrt{37}+2\text{ or }x\leq 2-\sqrt{37}
Graph
Share
Copied to clipboard
x^{2}-4x-32=\left(x-a\right)^{2}+1
Use the distributive property to multiply x-8 by x+4 and combine like terms.
x^{2}-4x-32=x^{2}-2xa+a^{2}+1
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-a\right)^{2}.
x^{2}-4x-32-x^{2}=-2xa+a^{2}+1
Subtract x^{2} from both sides.
-4x-32=-2xa+a^{2}+1
Combine x^{2} and -x^{2} to get 0.
-4x-32+2xa=a^{2}+1
Add 2xa to both sides.
-4x+2xa=a^{2}+1+32
Add 32 to both sides.
-4x+2xa=a^{2}+33
Add 1 and 32 to get 33.
\left(-4+2a\right)x=a^{2}+33
Combine all terms containing x.
\left(2a-4\right)x=a^{2}+33
The equation is in standard form.
\frac{\left(2a-4\right)x}{2a-4}=\frac{a^{2}+33}{2a-4}
Divide both sides by -4+2a.
x=\frac{a^{2}+33}{2a-4}
Dividing by -4+2a undoes the multiplication by -4+2a.
x=\frac{a^{2}+33}{2\left(a-2\right)}
Divide a^{2}+33 by -4+2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}