Solve for x
x=8
Graph
Share
Copied to clipboard
x^{2}-16x+64=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
a+b=-16 ab=64
To solve the equation, factor x^{2}-16x+64 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-64 -2,-32 -4,-16 -8,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
Calculate the sum for each pair.
a=-8 b=-8
The solution is the pair that gives sum -16.
\left(x-8\right)\left(x-8\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
\left(x-8\right)^{2}
Rewrite as a binomial square.
x=8
To find equation solution, solve x-8=0.
x^{2}-16x+64=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
a+b=-16 ab=1\times 64=64
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+64. To find a and b, set up a system to be solved.
-1,-64 -2,-32 -4,-16 -8,-8
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 64.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
Calculate the sum for each pair.
a=-8 b=-8
The solution is the pair that gives sum -16.
\left(x^{2}-8x\right)+\left(-8x+64\right)
Rewrite x^{2}-16x+64 as \left(x^{2}-8x\right)+\left(-8x+64\right).
x\left(x-8\right)-8\left(x-8\right)
Factor out x in the first and -8 in the second group.
\left(x-8\right)\left(x-8\right)
Factor out common term x-8 by using distributive property.
\left(x-8\right)^{2}
Rewrite as a binomial square.
x=8
To find equation solution, solve x-8=0.
x^{2}-16x+64=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-8\right)^{2}.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 64}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 64}}{2}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256-256}}{2}
Multiply -4 times 64.
x=\frac{-\left(-16\right)±\sqrt{0}}{2}
Add 256 to -256.
x=-\frac{-16}{2}
Take the square root of 0.
x=\frac{16}{2}
The opposite of -16 is 16.
x=8
Divide 16 by 2.
\sqrt{\left(x-8\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-8=0 x-8=0
Simplify.
x=8 x=8
Add 8 to both sides of the equation.
x=8
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}