Solve for x
x=12
x=2
Graph
Share
Copied to clipboard
x^{2}-14x+49-8=17
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
x^{2}-14x+41=17
Subtract 8 from 49 to get 41.
x^{2}-14x+41-17=0
Subtract 17 from both sides.
x^{2}-14x+24=0
Subtract 17 from 41 to get 24.
a+b=-14 ab=24
To solve the equation, factor x^{2}-14x+24 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-12 b=-2
The solution is the pair that gives sum -14.
\left(x-12\right)\left(x-2\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=12 x=2
To find equation solutions, solve x-12=0 and x-2=0.
x^{2}-14x+49-8=17
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
x^{2}-14x+41=17
Subtract 8 from 49 to get 41.
x^{2}-14x+41-17=0
Subtract 17 from both sides.
x^{2}-14x+24=0
Subtract 17 from 41 to get 24.
a+b=-14 ab=1\times 24=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-12 b=-2
The solution is the pair that gives sum -14.
\left(x^{2}-12x\right)+\left(-2x+24\right)
Rewrite x^{2}-14x+24 as \left(x^{2}-12x\right)+\left(-2x+24\right).
x\left(x-12\right)-2\left(x-12\right)
Factor out x in the first and -2 in the second group.
\left(x-12\right)\left(x-2\right)
Factor out common term x-12 by using distributive property.
x=12 x=2
To find equation solutions, solve x-12=0 and x-2=0.
x^{2}-14x+49-8=17
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
x^{2}-14x+41=17
Subtract 8 from 49 to get 41.
x^{2}-14x+41-17=0
Subtract 17 from both sides.
x^{2}-14x+24=0
Subtract 17 from 41 to get 24.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 24}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 24}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-96}}{2}
Multiply -4 times 24.
x=\frac{-\left(-14\right)±\sqrt{100}}{2}
Add 196 to -96.
x=\frac{-\left(-14\right)±10}{2}
Take the square root of 100.
x=\frac{14±10}{2}
The opposite of -14 is 14.
x=\frac{24}{2}
Now solve the equation x=\frac{14±10}{2} when ± is plus. Add 14 to 10.
x=12
Divide 24 by 2.
x=\frac{4}{2}
Now solve the equation x=\frac{14±10}{2} when ± is minus. Subtract 10 from 14.
x=2
Divide 4 by 2.
x=12 x=2
The equation is now solved.
x^{2}-14x+49-8=17
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
x^{2}-14x+41=17
Subtract 8 from 49 to get 41.
x^{2}-14x=17-41
Subtract 41 from both sides.
x^{2}-14x=-24
Subtract 41 from 17 to get -24.
x^{2}-14x+\left(-7\right)^{2}=-24+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-24+49
Square -7.
x^{2}-14x+49=25
Add -24 to 49.
\left(x-7\right)^{2}=25
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-7=5 x-7=-5
Simplify.
x=12 x=2
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}