Solve for x
x>\frac{82}{21}
Graph
Share
Copied to clipboard
x^{2}-15x+54-\left(x-7\right)\left(x-1\right)<7\left(2x-5\right)
Use the distributive property to multiply x-6 by x-9 and combine like terms.
x^{2}-15x+54-\left(x^{2}-8x+7\right)<7\left(2x-5\right)
Use the distributive property to multiply x-7 by x-1 and combine like terms.
x^{2}-15x+54-x^{2}+8x-7<7\left(2x-5\right)
To find the opposite of x^{2}-8x+7, find the opposite of each term.
-15x+54+8x-7<7\left(2x-5\right)
Combine x^{2} and -x^{2} to get 0.
-7x+54-7<7\left(2x-5\right)
Combine -15x and 8x to get -7x.
-7x+47<7\left(2x-5\right)
Subtract 7 from 54 to get 47.
-7x+47<14x-35
Use the distributive property to multiply 7 by 2x-5.
-7x+47-14x<-35
Subtract 14x from both sides.
-21x+47<-35
Combine -7x and -14x to get -21x.
-21x<-35-47
Subtract 47 from both sides.
-21x<-82
Subtract 47 from -35 to get -82.
x>\frac{-82}{-21}
Divide both sides by -21. Since -21 is negative, the inequality direction is changed.
x>\frac{82}{21}
Fraction \frac{-82}{-21} can be simplified to \frac{82}{21} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}