Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-12x+36-2x\left(x+3\right)=30-12x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36-2x\left(x+3\right)-30=-12x
Subtract 30 from both sides.
x^{2}-12x+36-2x\left(x+3\right)-30+12x=0
Add 12x to both sides.
x^{2}-12x+36-2x^{2}-6x-30+12x=0
Use the distributive property to multiply -2x by x+3.
-x^{2}-12x+36-6x-30+12x=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-18x+36-30+12x=0
Combine -12x and -6x to get -18x.
-x^{2}-18x+6+12x=0
Subtract 30 from 36 to get 6.
-x^{2}-6x+6=0
Combine -18x and 12x to get -6x.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+24}}{2\left(-1\right)}
Multiply 4 times 6.
x=\frac{-\left(-6\right)±\sqrt{60}}{2\left(-1\right)}
Add 36 to 24.
x=\frac{-\left(-6\right)±2\sqrt{15}}{2\left(-1\right)}
Take the square root of 60.
x=\frac{6±2\sqrt{15}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{15}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{15}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{15}}{-2} when ± is plus. Add 6 to 2\sqrt{15}.
x=-\left(\sqrt{15}+3\right)
Divide 6+2\sqrt{15} by -2.
x=\frac{6-2\sqrt{15}}{-2}
Now solve the equation x=\frac{6±2\sqrt{15}}{-2} when ± is minus. Subtract 2\sqrt{15} from 6.
x=\sqrt{15}-3
Divide 6-2\sqrt{15} by -2.
x=-\left(\sqrt{15}+3\right) x=\sqrt{15}-3
The equation is now solved.
x^{2}-12x+36-2x\left(x+3\right)=30-12x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36-2x\left(x+3\right)+12x=30
Add 12x to both sides.
x^{2}-12x+36-2x^{2}-6x+12x=30
Use the distributive property to multiply -2x by x+3.
-x^{2}-12x+36-6x+12x=30
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-18x+36+12x=30
Combine -12x and -6x to get -18x.
-x^{2}-6x+36=30
Combine -18x and 12x to get -6x.
-x^{2}-6x=30-36
Subtract 36 from both sides.
-x^{2}-6x=-6
Subtract 36 from 30 to get -6.
\frac{-x^{2}-6x}{-1}=-\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{6}{-1}
Divide -6 by -1.
x^{2}+6x=6
Divide -6 by -1.
x^{2}+6x+3^{2}=6+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=6+9
Square 3.
x^{2}+6x+9=15
Add 6 to 9.
\left(x+3\right)^{2}=15
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+3=\sqrt{15} x+3=-\sqrt{15}
Simplify.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Subtract 3 from both sides of the equation.
x^{2}-12x+36-2x\left(x+3\right)=30-12x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36-2x\left(x+3\right)-30=-12x
Subtract 30 from both sides.
x^{2}-12x+36-2x\left(x+3\right)-30+12x=0
Add 12x to both sides.
x^{2}-12x+36-2x^{2}-6x-30+12x=0
Use the distributive property to multiply -2x by x+3.
-x^{2}-12x+36-6x-30+12x=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-18x+36-30+12x=0
Combine -12x and -6x to get -18x.
-x^{2}-18x+6+12x=0
Subtract 30 from 36 to get 6.
-x^{2}-6x+6=0
Combine -18x and 12x to get -6x.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+24}}{2\left(-1\right)}
Multiply 4 times 6.
x=\frac{-\left(-6\right)±\sqrt{60}}{2\left(-1\right)}
Add 36 to 24.
x=\frac{-\left(-6\right)±2\sqrt{15}}{2\left(-1\right)}
Take the square root of 60.
x=\frac{6±2\sqrt{15}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{15}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{15}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{15}}{-2} when ± is plus. Add 6 to 2\sqrt{15}.
x=-\left(\sqrt{15}+3\right)
Divide 6+2\sqrt{15} by -2.
x=\frac{6-2\sqrt{15}}{-2}
Now solve the equation x=\frac{6±2\sqrt{15}}{-2} when ± is minus. Subtract 2\sqrt{15} from 6.
x=\sqrt{15}-3
Divide 6-2\sqrt{15} by -2.
x=-\left(\sqrt{15}+3\right) x=\sqrt{15}-3
The equation is now solved.
x^{2}-12x+36-2x\left(x+3\right)=30-12x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36-2x\left(x+3\right)+12x=30
Add 12x to both sides.
x^{2}-12x+36-2x^{2}-6x+12x=30
Use the distributive property to multiply -2x by x+3.
-x^{2}-12x+36-6x+12x=30
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-18x+36+12x=30
Combine -12x and -6x to get -18x.
-x^{2}-6x+36=30
Combine -18x and 12x to get -6x.
-x^{2}-6x=30-36
Subtract 36 from both sides.
-x^{2}-6x=-6
Subtract 36 from 30 to get -6.
\frac{-x^{2}-6x}{-1}=-\frac{6}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{6}{-1}
Divide -6 by -1.
x^{2}+6x=6
Divide -6 by -1.
x^{2}+6x+3^{2}=6+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=6+9
Square 3.
x^{2}+6x+9=15
Add 6 to 9.
\left(x+3\right)^{2}=15
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{15}
Take the square root of both sides of the equation.
x+3=\sqrt{15} x+3=-\sqrt{15}
Simplify.
x=\sqrt{15}-3 x=-\sqrt{15}-3
Subtract 3 from both sides of the equation.