Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-12x+36+\left(-x+12\right)^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36+\left(-x\right)^{2}+24\left(-x\right)+144=50
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+12\right)^{2}.
x^{2}-12x+36+x^{2}+24\left(-x\right)+144=50
Calculate -x to the power of 2 and get x^{2}.
2x^{2}-12x+36+24\left(-x\right)+144=50
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-12x+180+24\left(-x\right)=50
Add 36 and 144 to get 180.
2x^{2}-12x+180+24\left(-x\right)-50=0
Subtract 50 from both sides.
2x^{2}-12x+130+24\left(-x\right)=0
Subtract 50 from 180 to get 130.
2x^{2}-12x+130-24x=0
Multiply 24 and -1 to get -24.
2x^{2}-36x+130=0
Combine -12x and -24x to get -36x.
x^{2}-18x+65=0
Divide both sides by 2.
a+b=-18 ab=1\times 65=65
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+65. To find a and b, set up a system to be solved.
-1,-65 -5,-13
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 65.
-1-65=-66 -5-13=-18
Calculate the sum for each pair.
a=-13 b=-5
The solution is the pair that gives sum -18.
\left(x^{2}-13x\right)+\left(-5x+65\right)
Rewrite x^{2}-18x+65 as \left(x^{2}-13x\right)+\left(-5x+65\right).
x\left(x-13\right)-5\left(x-13\right)
Factor out x in the first and -5 in the second group.
\left(x-13\right)\left(x-5\right)
Factor out common term x-13 by using distributive property.
x=13 x=5
To find equation solutions, solve x-13=0 and x-5=0.
x^{2}-12x+36+\left(-x+12\right)^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36+\left(-x\right)^{2}+24\left(-x\right)+144=50
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+12\right)^{2}.
x^{2}-12x+36+x^{2}+24\left(-x\right)+144=50
Calculate -x to the power of 2 and get x^{2}.
2x^{2}-12x+36+24\left(-x\right)+144=50
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-12x+180+24\left(-x\right)=50
Add 36 and 144 to get 180.
2x^{2}-12x+180+24\left(-x\right)-50=0
Subtract 50 from both sides.
2x^{2}-12x+130+24\left(-x\right)=0
Subtract 50 from 180 to get 130.
2x^{2}-12x+130-24x=0
Multiply 24 and -1 to get -24.
2x^{2}-36x+130=0
Combine -12x and -24x to get -36x.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 2\times 130}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -36 for b, and 130 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 2\times 130}}{2\times 2}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-8\times 130}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-36\right)±\sqrt{1296-1040}}{2\times 2}
Multiply -8 times 130.
x=\frac{-\left(-36\right)±\sqrt{256}}{2\times 2}
Add 1296 to -1040.
x=\frac{-\left(-36\right)±16}{2\times 2}
Take the square root of 256.
x=\frac{36±16}{2\times 2}
The opposite of -36 is 36.
x=\frac{36±16}{4}
Multiply 2 times 2.
x=\frac{52}{4}
Now solve the equation x=\frac{36±16}{4} when ± is plus. Add 36 to 16.
x=13
Divide 52 by 4.
x=\frac{20}{4}
Now solve the equation x=\frac{36±16}{4} when ± is minus. Subtract 16 from 36.
x=5
Divide 20 by 4.
x=13 x=5
The equation is now solved.
x^{2}-12x+36+\left(-x+12\right)^{2}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36+\left(-x\right)^{2}+24\left(-x\right)+144=50
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+12\right)^{2}.
x^{2}-12x+36+x^{2}+24\left(-x\right)+144=50
Calculate -x to the power of 2 and get x^{2}.
2x^{2}-12x+36+24\left(-x\right)+144=50
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-12x+180+24\left(-x\right)=50
Add 36 and 144 to get 180.
2x^{2}-12x+24\left(-x\right)=50-180
Subtract 180 from both sides.
2x^{2}-12x+24\left(-x\right)=-130
Subtract 180 from 50 to get -130.
2x^{2}-12x-24x=-130
Multiply 24 and -1 to get -24.
2x^{2}-36x=-130
Combine -12x and -24x to get -36x.
\frac{2x^{2}-36x}{2}=-\frac{130}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{36}{2}\right)x=-\frac{130}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-18x=-\frac{130}{2}
Divide -36 by 2.
x^{2}-18x=-65
Divide -130 by 2.
x^{2}-18x+\left(-9\right)^{2}=-65+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=-65+81
Square -9.
x^{2}-18x+81=16
Add -65 to 81.
\left(x-9\right)^{2}=16
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-9=4 x-9=-4
Simplify.
x=13 x=5
Add 9 to both sides of the equation.