Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-4x-5=2\left(x-2\right)^{2}
Use the distributive property to multiply x-5 by x+1 and combine like terms.
x^{2}-4x-5=2\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x-5=2x^{2}-8x+8
Use the distributive property to multiply 2 by x^{2}-4x+4.
x^{2}-4x-5-2x^{2}=-8x+8
Subtract 2x^{2} from both sides.
-x^{2}-4x-5=-8x+8
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-4x-5+8x=8
Add 8x to both sides.
-x^{2}+4x-5=8
Combine -4x and 8x to get 4x.
-x^{2}+4x-5-8=0
Subtract 8 from both sides.
-x^{2}+4x-13=0
Subtract 8 from -5 to get -13.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\left(-13\right)}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\left(-13\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16-52}}{2\left(-1\right)}
Multiply 4 times -13.
x=\frac{-4±\sqrt{-36}}{2\left(-1\right)}
Add 16 to -52.
x=\frac{-4±6i}{2\left(-1\right)}
Take the square root of -36.
x=\frac{-4±6i}{-2}
Multiply 2 times -1.
x=\frac{-4+6i}{-2}
Now solve the equation x=\frac{-4±6i}{-2} when ± is plus. Add -4 to 6i.
x=2-3i
Divide -4+6i by -2.
x=\frac{-4-6i}{-2}
Now solve the equation x=\frac{-4±6i}{-2} when ± is minus. Subtract 6i from -4.
x=2+3i
Divide -4-6i by -2.
x=2-3i x=2+3i
The equation is now solved.
x^{2}-4x-5=2\left(x-2\right)^{2}
Use the distributive property to multiply x-5 by x+1 and combine like terms.
x^{2}-4x-5=2\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x-5=2x^{2}-8x+8
Use the distributive property to multiply 2 by x^{2}-4x+4.
x^{2}-4x-5-2x^{2}=-8x+8
Subtract 2x^{2} from both sides.
-x^{2}-4x-5=-8x+8
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-4x-5+8x=8
Add 8x to both sides.
-x^{2}+4x-5=8
Combine -4x and 8x to get 4x.
-x^{2}+4x=8+5
Add 5 to both sides.
-x^{2}+4x=13
Add 8 and 5 to get 13.
\frac{-x^{2}+4x}{-1}=\frac{13}{-1}
Divide both sides by -1.
x^{2}+\frac{4}{-1}x=\frac{13}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-4x=\frac{13}{-1}
Divide 4 by -1.
x^{2}-4x=-13
Divide 13 by -1.
x^{2}-4x+\left(-2\right)^{2}=-13+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-13+4
Square -2.
x^{2}-4x+4=-9
Add -13 to 4.
\left(x-2\right)^{2}=-9
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-9}
Take the square root of both sides of the equation.
x-2=3i x-2=-3i
Simplify.
x=2+3i x=2-3i
Add 2 to both sides of the equation.