Solve for x
x=12
x=5
Graph
Share
Copied to clipboard
3x^{2}-19x+20-\left(2x+8\right)\left(x-5\right)=0
Use the distributive property to multiply x-5 by 3x-4 and combine like terms.
3x^{2}-19x+20-\left(2x^{2}-2x-40\right)=0
Use the distributive property to multiply 2x+8 by x-5 and combine like terms.
3x^{2}-19x+20-2x^{2}+2x+40=0
To find the opposite of 2x^{2}-2x-40, find the opposite of each term.
x^{2}-19x+20+2x+40=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-17x+20+40=0
Combine -19x and 2x to get -17x.
x^{2}-17x+60=0
Add 20 and 40 to get 60.
a+b=-17 ab=60
To solve the equation, factor x^{2}-17x+60 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 60.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Calculate the sum for each pair.
a=-12 b=-5
The solution is the pair that gives sum -17.
\left(x-12\right)\left(x-5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=12 x=5
To find equation solutions, solve x-12=0 and x-5=0.
3x^{2}-19x+20-\left(2x+8\right)\left(x-5\right)=0
Use the distributive property to multiply x-5 by 3x-4 and combine like terms.
3x^{2}-19x+20-\left(2x^{2}-2x-40\right)=0
Use the distributive property to multiply 2x+8 by x-5 and combine like terms.
3x^{2}-19x+20-2x^{2}+2x+40=0
To find the opposite of 2x^{2}-2x-40, find the opposite of each term.
x^{2}-19x+20+2x+40=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-17x+20+40=0
Combine -19x and 2x to get -17x.
x^{2}-17x+60=0
Add 20 and 40 to get 60.
a+b=-17 ab=1\times 60=60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+60. To find a and b, set up a system to be solved.
-1,-60 -2,-30 -3,-20 -4,-15 -5,-12 -6,-10
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 60.
-1-60=-61 -2-30=-32 -3-20=-23 -4-15=-19 -5-12=-17 -6-10=-16
Calculate the sum for each pair.
a=-12 b=-5
The solution is the pair that gives sum -17.
\left(x^{2}-12x\right)+\left(-5x+60\right)
Rewrite x^{2}-17x+60 as \left(x^{2}-12x\right)+\left(-5x+60\right).
x\left(x-12\right)-5\left(x-12\right)
Factor out x in the first and -5 in the second group.
\left(x-12\right)\left(x-5\right)
Factor out common term x-12 by using distributive property.
x=12 x=5
To find equation solutions, solve x-12=0 and x-5=0.
3x^{2}-19x+20-\left(2x+8\right)\left(x-5\right)=0
Use the distributive property to multiply x-5 by 3x-4 and combine like terms.
3x^{2}-19x+20-\left(2x^{2}-2x-40\right)=0
Use the distributive property to multiply 2x+8 by x-5 and combine like terms.
3x^{2}-19x+20-2x^{2}+2x+40=0
To find the opposite of 2x^{2}-2x-40, find the opposite of each term.
x^{2}-19x+20+2x+40=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-17x+20+40=0
Combine -19x and 2x to get -17x.
x^{2}-17x+60=0
Add 20 and 40 to get 60.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 60}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -17 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 60}}{2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-240}}{2}
Multiply -4 times 60.
x=\frac{-\left(-17\right)±\sqrt{49}}{2}
Add 289 to -240.
x=\frac{-\left(-17\right)±7}{2}
Take the square root of 49.
x=\frac{17±7}{2}
The opposite of -17 is 17.
x=\frac{24}{2}
Now solve the equation x=\frac{17±7}{2} when ± is plus. Add 17 to 7.
x=12
Divide 24 by 2.
x=\frac{10}{2}
Now solve the equation x=\frac{17±7}{2} when ± is minus. Subtract 7 from 17.
x=5
Divide 10 by 2.
x=12 x=5
The equation is now solved.
3x^{2}-19x+20-\left(2x+8\right)\left(x-5\right)=0
Use the distributive property to multiply x-5 by 3x-4 and combine like terms.
3x^{2}-19x+20-\left(2x^{2}-2x-40\right)=0
Use the distributive property to multiply 2x+8 by x-5 and combine like terms.
3x^{2}-19x+20-2x^{2}+2x+40=0
To find the opposite of 2x^{2}-2x-40, find the opposite of each term.
x^{2}-19x+20+2x+40=0
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-17x+20+40=0
Combine -19x and 2x to get -17x.
x^{2}-17x+60=0
Add 20 and 40 to get 60.
x^{2}-17x=-60
Subtract 60 from both sides. Anything subtracted from zero gives its negation.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-60+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=-60+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{49}{4}
Add -60 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{7}{2} x-\frac{17}{2}=-\frac{7}{2}
Simplify.
x=12 x=5
Add \frac{17}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}