Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-25=75
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}=75+25
Add 25 to both sides.
x^{2}=100
Add 75 and 25 to get 100.
x=10 x=-10
Take the square root of both sides of the equation.
x^{2}-25=75
Consider \left(x-5\right)\left(x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
x^{2}-25-75=0
Subtract 75 from both sides.
x^{2}-100=0
Subtract 75 from -25 to get -100.
x=\frac{0±\sqrt{0^{2}-4\left(-100\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-100\right)}}{2}
Square 0.
x=\frac{0±\sqrt{400}}{2}
Multiply -4 times -100.
x=\frac{0±20}{2}
Take the square root of 400.
x=10
Now solve the equation x=\frac{0±20}{2} when ± is plus. Divide 20 by 2.
x=-10
Now solve the equation x=\frac{0±20}{2} when ± is minus. Divide -20 by 2.
x=10 x=-10
The equation is now solved.