Solve for x
x=6
x=4
Graph
Share
Copied to clipboard
x^{2}-10x+25=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25-1=0
Subtract 1 from both sides.
x^{2}-10x+24=0
Subtract 1 from 25 to get 24.
a+b=-10 ab=24
To solve the equation, factor x^{2}-10x+24 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-6 b=-4
The solution is the pair that gives sum -10.
\left(x-6\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=6 x=4
To find equation solutions, solve x-6=0 and x-4=0.
x^{2}-10x+25=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25-1=0
Subtract 1 from both sides.
x^{2}-10x+24=0
Subtract 1 from 25 to get 24.
a+b=-10 ab=1\times 24=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+24. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-6 b=-4
The solution is the pair that gives sum -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Rewrite x^{2}-10x+24 as \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
Factor out x in the first and -4 in the second group.
\left(x-6\right)\left(x-4\right)
Factor out common term x-6 by using distributive property.
x=6 x=4
To find equation solutions, solve x-6=0 and x-4=0.
x^{2}-10x+25=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25-1=0
Subtract 1 from both sides.
x^{2}-10x+24=0
Subtract 1 from 25 to get 24.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Multiply -4 times 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Add 100 to -96.
x=\frac{-\left(-10\right)±2}{2}
Take the square root of 4.
x=\frac{10±2}{2}
The opposite of -10 is 10.
x=\frac{12}{2}
Now solve the equation x=\frac{10±2}{2} when ± is plus. Add 10 to 2.
x=6
Divide 12 by 2.
x=\frac{8}{2}
Now solve the equation x=\frac{10±2}{2} when ± is minus. Subtract 2 from 10.
x=4
Divide 8 by 2.
x=6 x=4
The equation is now solved.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-5=1 x-5=-1
Simplify.
x=6 x=4
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}