Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
x=5
Graph
Share
Copied to clipboard
x^{2}-10x+25=\left(x+5\right)^{2}-3x^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=x^{2}+10x+25-3x^{2}-25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}-10x+25=-2x^{2}+10x+25-25
Combine x^{2} and -3x^{2} to get -2x^{2}.
x^{2}-10x+25=-2x^{2}+10x
Subtract 25 from 25 to get 0.
x^{2}-10x+25+2x^{2}=10x
Add 2x^{2} to both sides.
3x^{2}-10x+25=10x
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-10x+25-10x=0
Subtract 10x from both sides.
3x^{2}-20x+25=0
Combine -10x and -10x to get -20x.
a+b=-20 ab=3\times 25=75
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+25. To find a and b, set up a system to be solved.
-1,-75 -3,-25 -5,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 75.
-1-75=-76 -3-25=-28 -5-15=-20
Calculate the sum for each pair.
a=-15 b=-5
The solution is the pair that gives sum -20.
\left(3x^{2}-15x\right)+\left(-5x+25\right)
Rewrite 3x^{2}-20x+25 as \left(3x^{2}-15x\right)+\left(-5x+25\right).
3x\left(x-5\right)-5\left(x-5\right)
Factor out 3x in the first and -5 in the second group.
\left(x-5\right)\left(3x-5\right)
Factor out common term x-5 by using distributive property.
x=5 x=\frac{5}{3}
To find equation solutions, solve x-5=0 and 3x-5=0.
x^{2}-10x+25=\left(x+5\right)^{2}-3x^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=x^{2}+10x+25-3x^{2}-25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}-10x+25=-2x^{2}+10x+25-25
Combine x^{2} and -3x^{2} to get -2x^{2}.
x^{2}-10x+25=-2x^{2}+10x
Subtract 25 from 25 to get 0.
x^{2}-10x+25+2x^{2}=10x
Add 2x^{2} to both sides.
3x^{2}-10x+25=10x
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-10x+25-10x=0
Subtract 10x from both sides.
3x^{2}-20x+25=0
Combine -10x and -10x to get -20x.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\times 25}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -20 for b, and 25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 3\times 25}}{2\times 3}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-12\times 25}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-20\right)±\sqrt{400-300}}{2\times 3}
Multiply -12 times 25.
x=\frac{-\left(-20\right)±\sqrt{100}}{2\times 3}
Add 400 to -300.
x=\frac{-\left(-20\right)±10}{2\times 3}
Take the square root of 100.
x=\frac{20±10}{2\times 3}
The opposite of -20 is 20.
x=\frac{20±10}{6}
Multiply 2 times 3.
x=\frac{30}{6}
Now solve the equation x=\frac{20±10}{6} when ± is plus. Add 20 to 10.
x=5
Divide 30 by 6.
x=\frac{10}{6}
Now solve the equation x=\frac{20±10}{6} when ± is minus. Subtract 10 from 20.
x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{5}{3}
The equation is now solved.
x^{2}-10x+25=\left(x+5\right)^{2}-3x^{2}-25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25=x^{2}+10x+25-3x^{2}-25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}-10x+25=-2x^{2}+10x+25-25
Combine x^{2} and -3x^{2} to get -2x^{2}.
x^{2}-10x+25=-2x^{2}+10x
Subtract 25 from 25 to get 0.
x^{2}-10x+25+2x^{2}=10x
Add 2x^{2} to both sides.
3x^{2}-10x+25=10x
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-10x+25-10x=0
Subtract 10x from both sides.
3x^{2}-20x+25=0
Combine -10x and -10x to get -20x.
3x^{2}-20x=-25
Subtract 25 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-20x}{3}=-\frac{25}{3}
Divide both sides by 3.
x^{2}-\frac{20}{3}x=-\frac{25}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{25}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{25}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{25}{9}
Add -\frac{25}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{25}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{5}{3} x-\frac{10}{3}=-\frac{5}{3}
Simplify.
x=5 x=\frac{5}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}