Solve for x
x=\sqrt{2}+5\approx 6.414213562
x=5-\sqrt{2}\approx 3.585786438
Graph
Share
Copied to clipboard
x^{2}-10x+25+\left(4x-22+2\right)^{2}=34
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25+\left(4x-20\right)^{2}=34
Add -22 and 2 to get -20.
x^{2}-10x+25+16x^{2}-160x+400=34
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-20\right)^{2}.
17x^{2}-10x+25-160x+400=34
Combine x^{2} and 16x^{2} to get 17x^{2}.
17x^{2}-170x+25+400=34
Combine -10x and -160x to get -170x.
17x^{2}-170x+425=34
Add 25 and 400 to get 425.
17x^{2}-170x+425-34=0
Subtract 34 from both sides.
17x^{2}-170x+391=0
Subtract 34 from 425 to get 391.
x=\frac{-\left(-170\right)±\sqrt{\left(-170\right)^{2}-4\times 17\times 391}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, -170 for b, and 391 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-170\right)±\sqrt{28900-4\times 17\times 391}}{2\times 17}
Square -170.
x=\frac{-\left(-170\right)±\sqrt{28900-68\times 391}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-170\right)±\sqrt{28900-26588}}{2\times 17}
Multiply -68 times 391.
x=\frac{-\left(-170\right)±\sqrt{2312}}{2\times 17}
Add 28900 to -26588.
x=\frac{-\left(-170\right)±34\sqrt{2}}{2\times 17}
Take the square root of 2312.
x=\frac{170±34\sqrt{2}}{2\times 17}
The opposite of -170 is 170.
x=\frac{170±34\sqrt{2}}{34}
Multiply 2 times 17.
x=\frac{34\sqrt{2}+170}{34}
Now solve the equation x=\frac{170±34\sqrt{2}}{34} when ± is plus. Add 170 to 34\sqrt{2}.
x=\sqrt{2}+5
Divide 170+34\sqrt{2} by 34.
x=\frac{170-34\sqrt{2}}{34}
Now solve the equation x=\frac{170±34\sqrt{2}}{34} when ± is minus. Subtract 34\sqrt{2} from 170.
x=5-\sqrt{2}
Divide 170-34\sqrt{2} by 34.
x=\sqrt{2}+5 x=5-\sqrt{2}
The equation is now solved.
x^{2}-10x+25+\left(4x-22+2\right)^{2}=34
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25+\left(4x-20\right)^{2}=34
Add -22 and 2 to get -20.
x^{2}-10x+25+16x^{2}-160x+400=34
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-20\right)^{2}.
17x^{2}-10x+25-160x+400=34
Combine x^{2} and 16x^{2} to get 17x^{2}.
17x^{2}-170x+25+400=34
Combine -10x and -160x to get -170x.
17x^{2}-170x+425=34
Add 25 and 400 to get 425.
17x^{2}-170x=34-425
Subtract 425 from both sides.
17x^{2}-170x=-391
Subtract 425 from 34 to get -391.
\frac{17x^{2}-170x}{17}=-\frac{391}{17}
Divide both sides by 17.
x^{2}+\left(-\frac{170}{17}\right)x=-\frac{391}{17}
Dividing by 17 undoes the multiplication by 17.
x^{2}-10x=-\frac{391}{17}
Divide -170 by 17.
x^{2}-10x=-23
Divide -391 by 17.
x^{2}-10x+\left(-5\right)^{2}=-23+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-23+25
Square -5.
x^{2}-10x+25=2
Add -23 to 25.
\left(x-5\right)^{2}=2
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{2}
Take the square root of both sides of the equation.
x-5=\sqrt{2} x-5=-\sqrt{2}
Simplify.
x=\sqrt{2}+5 x=5-\sqrt{2}
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}