Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-10x+25+\left(0-5\right)^{2}=169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25+\left(-5\right)^{2}=169
Subtract 5 from 0 to get -5.
x^{2}-10x+25+25=169
Calculate -5 to the power of 2 and get 25.
x^{2}-10x+50=169
Add 25 and 25 to get 50.
x^{2}-10x+50-169=0
Subtract 169 from both sides.
x^{2}-10x-119=0
Subtract 169 from 50 to get -119.
a+b=-10 ab=-119
To solve the equation, factor x^{2}-10x-119 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-119 7,-17
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -119.
1-119=-118 7-17=-10
Calculate the sum for each pair.
a=-17 b=7
The solution is the pair that gives sum -10.
\left(x-17\right)\left(x+7\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=17 x=-7
To find equation solutions, solve x-17=0 and x+7=0.
x^{2}-10x+25+\left(0-5\right)^{2}=169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25+\left(-5\right)^{2}=169
Subtract 5 from 0 to get -5.
x^{2}-10x+25+25=169
Calculate -5 to the power of 2 and get 25.
x^{2}-10x+50=169
Add 25 and 25 to get 50.
x^{2}-10x+50-169=0
Subtract 169 from both sides.
x^{2}-10x-119=0
Subtract 169 from 50 to get -119.
a+b=-10 ab=1\left(-119\right)=-119
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-119. To find a and b, set up a system to be solved.
1,-119 7,-17
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -119.
1-119=-118 7-17=-10
Calculate the sum for each pair.
a=-17 b=7
The solution is the pair that gives sum -10.
\left(x^{2}-17x\right)+\left(7x-119\right)
Rewrite x^{2}-10x-119 as \left(x^{2}-17x\right)+\left(7x-119\right).
x\left(x-17\right)+7\left(x-17\right)
Factor out x in the first and 7 in the second group.
\left(x-17\right)\left(x+7\right)
Factor out common term x-17 by using distributive property.
x=17 x=-7
To find equation solutions, solve x-17=0 and x+7=0.
x^{2}-10x+25+\left(0-5\right)^{2}=169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25+\left(-5\right)^{2}=169
Subtract 5 from 0 to get -5.
x^{2}-10x+25+25=169
Calculate -5 to the power of 2 and get 25.
x^{2}-10x+50=169
Add 25 and 25 to get 50.
x^{2}-10x+50-169=0
Subtract 169 from both sides.
x^{2}-10x-119=0
Subtract 169 from 50 to get -119.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-119\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and -119 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-119\right)}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+476}}{2}
Multiply -4 times -119.
x=\frac{-\left(-10\right)±\sqrt{576}}{2}
Add 100 to 476.
x=\frac{-\left(-10\right)±24}{2}
Take the square root of 576.
x=\frac{10±24}{2}
The opposite of -10 is 10.
x=\frac{34}{2}
Now solve the equation x=\frac{10±24}{2} when ± is plus. Add 10 to 24.
x=17
Divide 34 by 2.
x=-\frac{14}{2}
Now solve the equation x=\frac{10±24}{2} when ± is minus. Subtract 24 from 10.
x=-7
Divide -14 by 2.
x=17 x=-7
The equation is now solved.
x^{2}-10x+25+\left(0-5\right)^{2}=169
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
x^{2}-10x+25+\left(-5\right)^{2}=169
Subtract 5 from 0 to get -5.
x^{2}-10x+25+25=169
Calculate -5 to the power of 2 and get 25.
x^{2}-10x+50=169
Add 25 and 25 to get 50.
x^{2}-10x=169-50
Subtract 50 from both sides.
x^{2}-10x=119
Subtract 50 from 169 to get 119.
x^{2}-10x+\left(-5\right)^{2}=119+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=119+25
Square -5.
x^{2}-10x+25=144
Add 119 to 25.
\left(x-5\right)^{2}=144
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{144}
Take the square root of both sides of the equation.
x-5=12 x-5=-12
Simplify.
x=17 x=-7
Add 5 to both sides of the equation.