Solve for x
x=\sqrt{149}+53\approx 65.206555616
x=53-\sqrt{149}\approx 40.793444384
Graph
Share
Copied to clipboard
\left(x-40\right)\left(660-10x\right)=200
Add 140 and 520 to get 660.
1060x-10x^{2}-26400=200
Use the distributive property to multiply x-40 by 660-10x and combine like terms.
1060x-10x^{2}-26400-200=0
Subtract 200 from both sides.
1060x-10x^{2}-26600=0
Subtract 200 from -26400 to get -26600.
-10x^{2}+1060x-26600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1060±\sqrt{1060^{2}-4\left(-10\right)\left(-26600\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 1060 for b, and -26600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1060±\sqrt{1123600-4\left(-10\right)\left(-26600\right)}}{2\left(-10\right)}
Square 1060.
x=\frac{-1060±\sqrt{1123600+40\left(-26600\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-1060±\sqrt{1123600-1064000}}{2\left(-10\right)}
Multiply 40 times -26600.
x=\frac{-1060±\sqrt{59600}}{2\left(-10\right)}
Add 1123600 to -1064000.
x=\frac{-1060±20\sqrt{149}}{2\left(-10\right)}
Take the square root of 59600.
x=\frac{-1060±20\sqrt{149}}{-20}
Multiply 2 times -10.
x=\frac{20\sqrt{149}-1060}{-20}
Now solve the equation x=\frac{-1060±20\sqrt{149}}{-20} when ± is plus. Add -1060 to 20\sqrt{149}.
x=53-\sqrt{149}
Divide -1060+20\sqrt{149} by -20.
x=\frac{-20\sqrt{149}-1060}{-20}
Now solve the equation x=\frac{-1060±20\sqrt{149}}{-20} when ± is minus. Subtract 20\sqrt{149} from -1060.
x=\sqrt{149}+53
Divide -1060-20\sqrt{149} by -20.
x=53-\sqrt{149} x=\sqrt{149}+53
The equation is now solved.
\left(x-40\right)\left(660-10x\right)=200
Add 140 and 520 to get 660.
1060x-10x^{2}-26400=200
Use the distributive property to multiply x-40 by 660-10x and combine like terms.
1060x-10x^{2}=200+26400
Add 26400 to both sides.
1060x-10x^{2}=26600
Add 200 and 26400 to get 26600.
-10x^{2}+1060x=26600
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+1060x}{-10}=\frac{26600}{-10}
Divide both sides by -10.
x^{2}+\frac{1060}{-10}x=\frac{26600}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-106x=\frac{26600}{-10}
Divide 1060 by -10.
x^{2}-106x=-2660
Divide 26600 by -10.
x^{2}-106x+\left(-53\right)^{2}=-2660+\left(-53\right)^{2}
Divide -106, the coefficient of the x term, by 2 to get -53. Then add the square of -53 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-106x+2809=-2660+2809
Square -53.
x^{2}-106x+2809=149
Add -2660 to 2809.
\left(x-53\right)^{2}=149
Factor x^{2}-106x+2809. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-53\right)^{2}}=\sqrt{149}
Take the square root of both sides of the equation.
x-53=\sqrt{149} x-53=-\sqrt{149}
Simplify.
x=\sqrt{149}+53 x=53-\sqrt{149}
Add 53 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}