Evaluate
\left(x+\left(-4-3i\right)\right)\left(x+\left(-4+3i\right)\right)
Expand
x^{2}-8x+25
Share
Copied to clipboard
x^{2}-4x+3ix-4x+16-12i-3ix+12i+9
Apply the distributive property by multiplying each term of x-4-3i by each term of x-4+3i.
x^{2}-4x+3ix-4x-3ix+16+9+\left(-12+12\right)i
Combine the real and imaginary parts.
x^{2}-4x+3ix-4x-3ix+25
Do the additions.
x^{2}+\left(-4+3i\right)x-4x-3ix+25
Combine -4x and 3ix to get \left(-4+3i\right)x.
x^{2}+\left(-8+3i\right)x-3ix+25
Combine \left(-4+3i\right)x and -4x to get \left(-8+3i\right)x.
x^{2}-8x+25
Combine \left(-8+3i\right)x and -3ix to get -8x.
x^{2}-4x+3ix-4x+16-12i-3ix+12i+9
Apply the distributive property by multiplying each term of x-4-3i by each term of x-4+3i.
x^{2}-4x+3ix-4x-3ix+16+9+\left(-12+12\right)i
Combine the real and imaginary parts.
x^{2}-4x+3ix-4x-3ix+25
Do the additions.
x^{2}+\left(-4+3i\right)x-4x-3ix+25
Combine -4x and 3ix to get \left(-4+3i\right)x.
x^{2}+\left(-8+3i\right)x-3ix+25
Combine \left(-4+3i\right)x and -4x to get \left(-8+3i\right)x.
x^{2}-8x+25
Combine \left(-8+3i\right)x and -3ix to get -8x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}