Solve for x
x=-15
Graph
Share
Copied to clipboard
x-4-\frac{1}{3}\times 2x-\frac{1}{3}\left(-9\right)=\frac{1}{4}\left(x-1\right)-2
Use the distributive property to multiply -\frac{1}{3} by 2x-9.
x-4+\frac{-2}{3}x-\frac{1}{3}\left(-9\right)=\frac{1}{4}\left(x-1\right)-2
Express -\frac{1}{3}\times 2 as a single fraction.
x-4-\frac{2}{3}x-\frac{1}{3}\left(-9\right)=\frac{1}{4}\left(x-1\right)-2
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
x-4-\frac{2}{3}x+\frac{-\left(-9\right)}{3}=\frac{1}{4}\left(x-1\right)-2
Express -\frac{1}{3}\left(-9\right) as a single fraction.
x-4-\frac{2}{3}x+\frac{9}{3}=\frac{1}{4}\left(x-1\right)-2
Multiply -1 and -9 to get 9.
x-4-\frac{2}{3}x+3=\frac{1}{4}\left(x-1\right)-2
Divide 9 by 3 to get 3.
\frac{1}{3}x-4+3=\frac{1}{4}\left(x-1\right)-2
Combine x and -\frac{2}{3}x to get \frac{1}{3}x.
\frac{1}{3}x-1=\frac{1}{4}\left(x-1\right)-2
Add -4 and 3 to get -1.
\frac{1}{3}x-1=\frac{1}{4}x+\frac{1}{4}\left(-1\right)-2
Use the distributive property to multiply \frac{1}{4} by x-1.
\frac{1}{3}x-1=\frac{1}{4}x-\frac{1}{4}-2
Multiply \frac{1}{4} and -1 to get -\frac{1}{4}.
\frac{1}{3}x-1=\frac{1}{4}x-\frac{1}{4}-\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
\frac{1}{3}x-1=\frac{1}{4}x+\frac{-1-8}{4}
Since -\frac{1}{4} and \frac{8}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}x-1=\frac{1}{4}x-\frac{9}{4}
Subtract 8 from -1 to get -9.
\frac{1}{3}x-1-\frac{1}{4}x=-\frac{9}{4}
Subtract \frac{1}{4}x from both sides.
\frac{1}{12}x-1=-\frac{9}{4}
Combine \frac{1}{3}x and -\frac{1}{4}x to get \frac{1}{12}x.
\frac{1}{12}x=-\frac{9}{4}+1
Add 1 to both sides.
\frac{1}{12}x=-\frac{9}{4}+\frac{4}{4}
Convert 1 to fraction \frac{4}{4}.
\frac{1}{12}x=\frac{-9+4}{4}
Since -\frac{9}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{1}{12}x=-\frac{5}{4}
Add -9 and 4 to get -5.
x=-\frac{5}{4}\times 12
Multiply both sides by 12, the reciprocal of \frac{1}{12}.
x=\frac{-5\times 12}{4}
Express -\frac{5}{4}\times 12 as a single fraction.
x=\frac{-60}{4}
Multiply -5 and 12 to get -60.
x=-15
Divide -60 by 4 to get -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}