Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110.5
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110.5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110.5
Use the distributive property to multiply 4x+5 by 3x-10 and combine like terms.
x^{2}-8x+16-12x^{2}+25x+50=17x-110.5
To find the opposite of 12x^{2}-25x-50, find the opposite of each term.
-11x^{2}-8x+16+25x+50=17x-110.5
Combine x^{2} and -12x^{2} to get -11x^{2}.
-11x^{2}+17x+16+50=17x-110.5
Combine -8x and 25x to get 17x.
-11x^{2}+17x+66=17x-110.5
Add 16 and 50 to get 66.
-11x^{2}+17x+66-17x=-110.5
Subtract 17x from both sides.
-11x^{2}+66=-110.5
Combine 17x and -17x to get 0.
-11x^{2}=-110.5-66
Subtract 66 from both sides.
-11x^{2}=-176.5
Subtract 66 from -110.5 to get -176.5.
x^{2}=\frac{-176.5}{-11}
Divide both sides by -11.
x^{2}=\frac{-1765}{-110}
Expand \frac{-176.5}{-11} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{353}{22}
Reduce the fraction \frac{-1765}{-110} to lowest terms by extracting and canceling out -5.
x=\frac{\sqrt{7766}}{22} x=-\frac{\sqrt{7766}}{22}
Take the square root of both sides of the equation.
\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110.5
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110.5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110.5
Use the distributive property to multiply 4x+5 by 3x-10 and combine like terms.
x^{2}-8x+16-12x^{2}+25x+50=17x-110.5
To find the opposite of 12x^{2}-25x-50, find the opposite of each term.
-11x^{2}-8x+16+25x+50=17x-110.5
Combine x^{2} and -12x^{2} to get -11x^{2}.
-11x^{2}+17x+16+50=17x-110.5
Combine -8x and 25x to get 17x.
-11x^{2}+17x+66=17x-110.5
Add 16 and 50 to get 66.
-11x^{2}+17x+66-17x=-110.5
Subtract 17x from both sides.
-11x^{2}+66=-110.5
Combine 17x and -17x to get 0.
-11x^{2}+66+110.5=0
Add 110.5 to both sides.
-11x^{2}+176.5=0
Add 66 and 110.5 to get 176.5.
x=\frac{0±\sqrt{0^{2}-4\left(-11\right)\times 176.5}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, 0 for b, and 176.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-11\right)\times 176.5}}{2\left(-11\right)}
Square 0.
x=\frac{0±\sqrt{44\times 176.5}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{0±\sqrt{7766}}{2\left(-11\right)}
Multiply 44 times 176.5.
x=\frac{0±\sqrt{7766}}{-22}
Multiply 2 times -11.
x=-\frac{\sqrt{7766}}{22}
Now solve the equation x=\frac{0±\sqrt{7766}}{-22} when ± is plus.
x=\frac{\sqrt{7766}}{22}
Now solve the equation x=\frac{0±\sqrt{7766}}{-22} when ± is minus.
x=-\frac{\sqrt{7766}}{22} x=\frac{\sqrt{7766}}{22}
The equation is now solved.