Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110
Use the distributive property to multiply 4x+5 by 3x-10 and combine like terms.
x^{2}-8x+16-12x^{2}+25x+50=17x-110
To find the opposite of 12x^{2}-25x-50, find the opposite of each term.
-11x^{2}-8x+16+25x+50=17x-110
Combine x^{2} and -12x^{2} to get -11x^{2}.
-11x^{2}+17x+16+50=17x-110
Combine -8x and 25x to get 17x.
-11x^{2}+17x+66=17x-110
Add 16 and 50 to get 66.
-11x^{2}+17x+66-17x=-110
Subtract 17x from both sides.
-11x^{2}+66=-110
Combine 17x and -17x to get 0.
-11x^{2}=-110-66
Subtract 66 from both sides.
-11x^{2}=-176
Subtract 66 from -110 to get -176.
x^{2}=\frac{-176}{-11}
Divide both sides by -11.
x^{2}=16
Divide -176 by -11 to get 16.
x=4 x=-4
Take the square root of both sides of the equation.
\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110
Multiply x-4 and x-4 to get \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110
Use the distributive property to multiply 4x+5 by 3x-10 and combine like terms.
x^{2}-8x+16-12x^{2}+25x+50=17x-110
To find the opposite of 12x^{2}-25x-50, find the opposite of each term.
-11x^{2}-8x+16+25x+50=17x-110
Combine x^{2} and -12x^{2} to get -11x^{2}.
-11x^{2}+17x+16+50=17x-110
Combine -8x and 25x to get 17x.
-11x^{2}+17x+66=17x-110
Add 16 and 50 to get 66.
-11x^{2}+17x+66-17x=-110
Subtract 17x from both sides.
-11x^{2}+66=-110
Combine 17x and -17x to get 0.
-11x^{2}+66+110=0
Add 110 to both sides.
-11x^{2}+176=0
Add 66 and 110 to get 176.
x=\frac{0±\sqrt{0^{2}-4\left(-11\right)\times 176}}{2\left(-11\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -11 for a, 0 for b, and 176 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-11\right)\times 176}}{2\left(-11\right)}
Square 0.
x=\frac{0±\sqrt{44\times 176}}{2\left(-11\right)}
Multiply -4 times -11.
x=\frac{0±\sqrt{7744}}{2\left(-11\right)}
Multiply 44 times 176.
x=\frac{0±88}{2\left(-11\right)}
Take the square root of 7744.
x=\frac{0±88}{-22}
Multiply 2 times -11.
x=-4
Now solve the equation x=\frac{0±88}{-22} when ± is plus. Divide 88 by -22.
x=4
Now solve the equation x=\frac{0±88}{-22} when ± is minus. Divide -88 by -22.
x=-4 x=4
The equation is now solved.