Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-8x+16-\left(5-2x\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16-\left(25-20x+4x^{2}\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-8x+16-25+20x-4x^{2}=0
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
x^{2}-8x-9+20x-4x^{2}=0
Subtract 25 from 16 to get -9.
x^{2}+12x-9-4x^{2}=0
Combine -8x and 20x to get 12x.
-3x^{2}+12x-9=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-x^{2}+4x-3=0
Divide both sides by 3.
a+b=4 ab=-\left(-3\right)=3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=3 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-x^{2}+3x\right)+\left(x-3\right)
Rewrite -x^{2}+4x-3 as \left(-x^{2}+3x\right)+\left(x-3\right).
-x\left(x-3\right)+x-3
Factor out -x in -x^{2}+3x.
\left(x-3\right)\left(-x+1\right)
Factor out common term x-3 by using distributive property.
x=3 x=1
To find equation solutions, solve x-3=0 and -x+1=0.
x^{2}-8x+16-\left(5-2x\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16-\left(25-20x+4x^{2}\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-8x+16-25+20x-4x^{2}=0
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
x^{2}-8x-9+20x-4x^{2}=0
Subtract 25 from 16 to get -9.
x^{2}+12x-9-4x^{2}=0
Combine -8x and 20x to get 12x.
-3x^{2}+12x-9=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-12±\sqrt{12^{2}-4\left(-3\right)\left(-9\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 12 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-3\right)\left(-9\right)}}{2\left(-3\right)}
Square 12.
x=\frac{-12±\sqrt{144+12\left(-9\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-12±\sqrt{144-108}}{2\left(-3\right)}
Multiply 12 times -9.
x=\frac{-12±\sqrt{36}}{2\left(-3\right)}
Add 144 to -108.
x=\frac{-12±6}{2\left(-3\right)}
Take the square root of 36.
x=\frac{-12±6}{-6}
Multiply 2 times -3.
x=-\frac{6}{-6}
Now solve the equation x=\frac{-12±6}{-6} when ± is plus. Add -12 to 6.
x=1
Divide -6 by -6.
x=-\frac{18}{-6}
Now solve the equation x=\frac{-12±6}{-6} when ± is minus. Subtract 6 from -12.
x=3
Divide -18 by -6.
x=1 x=3
The equation is now solved.
x^{2}-8x+16-\left(5-2x\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16-\left(25-20x+4x^{2}\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-2x\right)^{2}.
x^{2}-8x+16-25+20x-4x^{2}=0
To find the opposite of 25-20x+4x^{2}, find the opposite of each term.
x^{2}-8x-9+20x-4x^{2}=0
Subtract 25 from 16 to get -9.
x^{2}+12x-9-4x^{2}=0
Combine -8x and 20x to get 12x.
-3x^{2}+12x-9=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+12x=9
Add 9 to both sides. Anything plus zero gives itself.
\frac{-3x^{2}+12x}{-3}=\frac{9}{-3}
Divide both sides by -3.
x^{2}+\frac{12}{-3}x=\frac{9}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-4x=\frac{9}{-3}
Divide 12 by -3.
x^{2}-4x=-3
Divide 9 by -3.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-3+4
Square -2.
x^{2}-4x+4=1
Add -3 to 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-2=1 x-2=-1
Simplify.
x=3 x=1
Add 2 to both sides of the equation.