Solve for x
x = -\frac{97}{10} = -9\frac{7}{10} = -9.7
Graph
Share
Copied to clipboard
x^{2}-8x+16+\left(x+9\right)^{2}=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16+x^{2}+18x+81=2x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+9\right)^{2}.
2x^{2}-8x+16+18x+81=2x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+16+81=2x^{2}
Combine -8x and 18x to get 10x.
2x^{2}+10x+97=2x^{2}
Add 16 and 81 to get 97.
2x^{2}+10x+97-2x^{2}=0
Subtract 2x^{2} from both sides.
10x+97=0
Combine 2x^{2} and -2x^{2} to get 0.
10x=-97
Subtract 97 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-97}{10}
Divide both sides by 10.
x=-\frac{97}{10}
Fraction \frac{-97}{10} can be rewritten as -\frac{97}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}