Solve for x
x=12
x=0
Graph
Share
Copied to clipboard
x^{2}-8x+16+\left(-x+8\right)^{2}=80
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16+\left(-x\right)^{2}+16\left(-x\right)+64=80
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+8\right)^{2}.
x^{2}-8x+16+x^{2}+16\left(-x\right)+64=80
Calculate -x to the power of 2 and get x^{2}.
2x^{2}-8x+16+16\left(-x\right)+64=80
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+80+16\left(-x\right)=80
Add 16 and 64 to get 80.
2x^{2}-8x+80+16\left(-x\right)-80=0
Subtract 80 from both sides.
2x^{2}-8x+16\left(-x\right)=0
Subtract 80 from 80 to get 0.
2x^{2}-8x-16x=0
Multiply 16 and -1 to get -16.
2x^{2}-24x=0
Combine -8x and -16x to get -24x.
x\left(2x-24\right)=0
Factor out x.
x=0 x=12
To find equation solutions, solve x=0 and 2x-24=0.
x^{2}-8x+16+\left(-x+8\right)^{2}=80
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16+\left(-x\right)^{2}+16\left(-x\right)+64=80
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+8\right)^{2}.
x^{2}-8x+16+x^{2}+16\left(-x\right)+64=80
Calculate -x to the power of 2 and get x^{2}.
2x^{2}-8x+16+16\left(-x\right)+64=80
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+80+16\left(-x\right)=80
Add 16 and 64 to get 80.
2x^{2}-8x+80+16\left(-x\right)-80=0
Subtract 80 from both sides.
2x^{2}-8x+16\left(-x\right)=0
Subtract 80 from 80 to get 0.
2x^{2}-8x-16x=0
Multiply 16 and -1 to get -16.
2x^{2}-24x=0
Combine -8x and -16x to get -24x.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±24}{2\times 2}
Take the square root of \left(-24\right)^{2}.
x=\frac{24±24}{2\times 2}
The opposite of -24 is 24.
x=\frac{24±24}{4}
Multiply 2 times 2.
x=\frac{48}{4}
Now solve the equation x=\frac{24±24}{4} when ± is plus. Add 24 to 24.
x=12
Divide 48 by 4.
x=\frac{0}{4}
Now solve the equation x=\frac{24±24}{4} when ± is minus. Subtract 24 from 24.
x=0
Divide 0 by 4.
x=12 x=0
The equation is now solved.
x^{2}-8x+16+\left(-x+8\right)^{2}=80
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x^{2}-8x+16+\left(-x\right)^{2}+16\left(-x\right)+64=80
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+8\right)^{2}.
x^{2}-8x+16+x^{2}+16\left(-x\right)+64=80
Calculate -x to the power of 2 and get x^{2}.
2x^{2}-8x+16+16\left(-x\right)+64=80
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+80+16\left(-x\right)=80
Add 16 and 64 to get 80.
2x^{2}-8x+16\left(-x\right)=80-80
Subtract 80 from both sides.
2x^{2}-8x+16\left(-x\right)=0
Subtract 80 from 80 to get 0.
2x^{2}-8x-16x=0
Multiply 16 and -1 to get -16.
2x^{2}-24x=0
Combine -8x and -16x to get -24x.
\frac{2x^{2}-24x}{2}=\frac{0}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{24}{2}\right)x=\frac{0}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-12x=\frac{0}{2}
Divide -24 by 2.
x^{2}-12x=0
Divide 0 by 2.
x^{2}-12x+\left(-6\right)^{2}=\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=36
Square -6.
\left(x-6\right)^{2}=36
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x-6=6 x-6=-6
Simplify.
x=12 x=0
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}