Evaluate
-5y\left(3x+5y\right)
Expand
-15xy-25y^{2}
Share
Copied to clipboard
3x^{2}+5xy-9yx-15y^{2}-\left(3x+5y\right)\left(x+2y\right)
Apply the distributive property by multiplying each term of x-3y by each term of 3x+5y.
3x^{2}-4xy-15y^{2}-\left(3x+5y\right)\left(x+2y\right)
Combine 5xy and -9yx to get -4xy.
3x^{2}-4xy-15y^{2}-\left(3x^{2}+6xy+5yx+10y^{2}\right)
Apply the distributive property by multiplying each term of 3x+5y by each term of x+2y.
3x^{2}-4xy-15y^{2}-\left(3x^{2}+11xy+10y^{2}\right)
Combine 6xy and 5yx to get 11xy.
3x^{2}-4xy-15y^{2}-3x^{2}-11xy-10y^{2}
To find the opposite of 3x^{2}+11xy+10y^{2}, find the opposite of each term.
-4xy-15y^{2}-11xy-10y^{2}
Combine 3x^{2} and -3x^{2} to get 0.
-15xy-15y^{2}-10y^{2}
Combine -4xy and -11xy to get -15xy.
-15xy-25y^{2}
Combine -15y^{2} and -10y^{2} to get -25y^{2}.
3x^{2}+5xy-9yx-15y^{2}-\left(3x+5y\right)\left(x+2y\right)
Apply the distributive property by multiplying each term of x-3y by each term of 3x+5y.
3x^{2}-4xy-15y^{2}-\left(3x+5y\right)\left(x+2y\right)
Combine 5xy and -9yx to get -4xy.
3x^{2}-4xy-15y^{2}-\left(3x^{2}+6xy+5yx+10y^{2}\right)
Apply the distributive property by multiplying each term of 3x+5y by each term of x+2y.
3x^{2}-4xy-15y^{2}-\left(3x^{2}+11xy+10y^{2}\right)
Combine 6xy and 5yx to get 11xy.
3x^{2}-4xy-15y^{2}-3x^{2}-11xy-10y^{2}
To find the opposite of 3x^{2}+11xy+10y^{2}, find the opposite of each term.
-4xy-15y^{2}-11xy-10y^{2}
Combine 3x^{2} and -3x^{2} to get 0.
-15xy-15y^{2}-10y^{2}
Combine -4xy and -11xy to get -15xy.
-15xy-25y^{2}
Combine -15y^{2} and -10y^{2} to get -25y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}