Solve for x
x=-\frac{-y^{2}+5y-20}{y+3}
y\neq -3
Solve for y (complex solution)
y=\frac{-\sqrt{x^{2}+22x-55}+x+5}{2}
y=\frac{\sqrt{x^{2}+22x-55}+x+5}{2}
Solve for y
y=\frac{-\sqrt{x^{2}+22x-55}+x+5}{2}
y=\frac{\sqrt{x^{2}+22x-55}+x+5}{2}\text{, }x\geq 4\sqrt{11}-11\text{ or }x\leq -4\sqrt{11}-11
Graph
Share
Copied to clipboard
xy+3x-3y-9-\left(y-4\right)^{2}=-5
Use the distributive property to multiply x-3 by y+3.
xy+3x-3y-9-\left(y^{2}-8y+16\right)=-5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
xy+3x-3y-9-y^{2}+8y-16=-5
To find the opposite of y^{2}-8y+16, find the opposite of each term.
xy+3x+5y-9-y^{2}-16=-5
Combine -3y and 8y to get 5y.
xy+3x+5y-25-y^{2}=-5
Subtract 16 from -9 to get -25.
xy+3x-25-y^{2}=-5-5y
Subtract 5y from both sides.
xy+3x-y^{2}=-5-5y+25
Add 25 to both sides.
xy+3x-y^{2}=20-5y
Add -5 and 25 to get 20.
xy+3x=20-5y+y^{2}
Add y^{2} to both sides.
\left(y+3\right)x=20-5y+y^{2}
Combine all terms containing x.
\left(y+3\right)x=y^{2}-5y+20
The equation is in standard form.
\frac{\left(y+3\right)x}{y+3}=\frac{y^{2}-5y+20}{y+3}
Divide both sides by y+3.
x=\frac{y^{2}-5y+20}{y+3}
Dividing by y+3 undoes the multiplication by y+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}