Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-9=2\times 4
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}-9=8
Multiply 2 and 4 to get 8.
x^{2}=8+9
Add 9 to both sides.
x^{2}=17
Add 8 and 9 to get 17.
x=\sqrt{17} x=-\sqrt{17}
Take the square root of both sides of the equation.
x^{2}-9=2\times 4
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}-9=8
Multiply 2 and 4 to get 8.
x^{2}-9-8=0
Subtract 8 from both sides.
x^{2}-17=0
Subtract 8 from -9 to get -17.
x=\frac{0±\sqrt{0^{2}-4\left(-17\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-17\right)}}{2}
Square 0.
x=\frac{0±\sqrt{68}}{2}
Multiply -4 times -17.
x=\frac{0±2\sqrt{17}}{2}
Take the square root of 68.
x=\sqrt{17}
Now solve the equation x=\frac{0±2\sqrt{17}}{2} when ± is plus.
x=-\sqrt{17}
Now solve the equation x=\frac{0±2\sqrt{17}}{2} when ± is minus.
x=\sqrt{17} x=-\sqrt{17}
The equation is now solved.