Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-6=2\left(x+4\right)
Use the distributive property to multiply x-3 by x+2 and combine like terms.
x^{2}-x-6=2x+8
Use the distributive property to multiply 2 by x+4.
x^{2}-x-6-2x=8
Subtract 2x from both sides.
x^{2}-3x-6=8
Combine -x and -2x to get -3x.
x^{2}-3x-6-8=0
Subtract 8 from both sides.
x^{2}-3x-14=0
Subtract 8 from -6 to get -14.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-14\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-14\right)}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+56}}{2}
Multiply -4 times -14.
x=\frac{-\left(-3\right)±\sqrt{65}}{2}
Add 9 to 56.
x=\frac{3±\sqrt{65}}{2}
The opposite of -3 is 3.
x=\frac{\sqrt{65}+3}{2}
Now solve the equation x=\frac{3±\sqrt{65}}{2} when ± is plus. Add 3 to \sqrt{65}.
x=\frac{3-\sqrt{65}}{2}
Now solve the equation x=\frac{3±\sqrt{65}}{2} when ± is minus. Subtract \sqrt{65} from 3.
x=\frac{\sqrt{65}+3}{2} x=\frac{3-\sqrt{65}}{2}
The equation is now solved.
x^{2}-x-6=2\left(x+4\right)
Use the distributive property to multiply x-3 by x+2 and combine like terms.
x^{2}-x-6=2x+8
Use the distributive property to multiply 2 by x+4.
x^{2}-x-6-2x=8
Subtract 2x from both sides.
x^{2}-3x-6=8
Combine -x and -2x to get -3x.
x^{2}-3x=8+6
Add 6 to both sides.
x^{2}-3x=14
Add 8 and 6 to get 14.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=14+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=14+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{65}{4}
Add 14 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{65}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{65}}{2} x-\frac{3}{2}=-\frac{\sqrt{65}}{2}
Simplify.
x=\frac{\sqrt{65}+3}{2} x=\frac{3-\sqrt{65}}{2}
Add \frac{3}{2} to both sides of the equation.