Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-11x+15=\left(x-3\right)\left(3-4x\right)
Use the distributive property to multiply x-3 by 2x-5 and combine like terms.
2x^{2}-11x+15=15x-4x^{2}-9
Use the distributive property to multiply x-3 by 3-4x and combine like terms.
2x^{2}-11x+15-15x=-4x^{2}-9
Subtract 15x from both sides.
2x^{2}-26x+15=-4x^{2}-9
Combine -11x and -15x to get -26x.
2x^{2}-26x+15+4x^{2}=-9
Add 4x^{2} to both sides.
6x^{2}-26x+15=-9
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}-26x+15+9=0
Add 9 to both sides.
6x^{2}-26x+24=0
Add 15 and 9 to get 24.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 6\times 24}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -26 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 6\times 24}}{2\times 6}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-24\times 24}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-26\right)±\sqrt{676-576}}{2\times 6}
Multiply -24 times 24.
x=\frac{-\left(-26\right)±\sqrt{100}}{2\times 6}
Add 676 to -576.
x=\frac{-\left(-26\right)±10}{2\times 6}
Take the square root of 100.
x=\frac{26±10}{2\times 6}
The opposite of -26 is 26.
x=\frac{26±10}{12}
Multiply 2 times 6.
x=\frac{36}{12}
Now solve the equation x=\frac{26±10}{12} when ± is plus. Add 26 to 10.
x=3
Divide 36 by 12.
x=\frac{16}{12}
Now solve the equation x=\frac{26±10}{12} when ± is minus. Subtract 10 from 26.
x=\frac{4}{3}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
x=3 x=\frac{4}{3}
The equation is now solved.
2x^{2}-11x+15=\left(x-3\right)\left(3-4x\right)
Use the distributive property to multiply x-3 by 2x-5 and combine like terms.
2x^{2}-11x+15=15x-4x^{2}-9
Use the distributive property to multiply x-3 by 3-4x and combine like terms.
2x^{2}-11x+15-15x=-4x^{2}-9
Subtract 15x from both sides.
2x^{2}-26x+15=-4x^{2}-9
Combine -11x and -15x to get -26x.
2x^{2}-26x+15+4x^{2}=-9
Add 4x^{2} to both sides.
6x^{2}-26x+15=-9
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}-26x=-9-15
Subtract 15 from both sides.
6x^{2}-26x=-24
Subtract 15 from -9 to get -24.
\frac{6x^{2}-26x}{6}=-\frac{24}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{26}{6}\right)x=-\frac{24}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{13}{3}x=-\frac{24}{6}
Reduce the fraction \frac{-26}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{13}{3}x=-4
Divide -24 by 6.
x^{2}-\frac{13}{3}x+\left(-\frac{13}{6}\right)^{2}=-4+\left(-\frac{13}{6}\right)^{2}
Divide -\frac{13}{3}, the coefficient of the x term, by 2 to get -\frac{13}{6}. Then add the square of -\frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{3}x+\frac{169}{36}=-4+\frac{169}{36}
Square -\frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{3}x+\frac{169}{36}=\frac{25}{36}
Add -4 to \frac{169}{36}.
\left(x-\frac{13}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}-\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x-\frac{13}{6}=\frac{5}{6} x-\frac{13}{6}=-\frac{5}{6}
Simplify.
x=3 x=\frac{4}{3}
Add \frac{13}{6} to both sides of the equation.