Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-3x-9=x+6
Use the distributive property to multiply x-3 by 2x+3 and combine like terms.
2x^{2}-3x-9-x=6
Subtract x from both sides.
2x^{2}-4x-9=6
Combine -3x and -x to get -4x.
2x^{2}-4x-9-6=0
Subtract 6 from both sides.
2x^{2}-4x-15=0
Subtract 6 from -9 to get -15.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-15\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -4 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-15\right)}}{2\times 2}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-15\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-4\right)±\sqrt{16+120}}{2\times 2}
Multiply -8 times -15.
x=\frac{-\left(-4\right)±\sqrt{136}}{2\times 2}
Add 16 to 120.
x=\frac{-\left(-4\right)±2\sqrt{34}}{2\times 2}
Take the square root of 136.
x=\frac{4±2\sqrt{34}}{2\times 2}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{34}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{34}+4}{4}
Now solve the equation x=\frac{4±2\sqrt{34}}{4} when ± is plus. Add 4 to 2\sqrt{34}.
x=\frac{\sqrt{34}}{2}+1
Divide 4+2\sqrt{34} by 4.
x=\frac{4-2\sqrt{34}}{4}
Now solve the equation x=\frac{4±2\sqrt{34}}{4} when ± is minus. Subtract 2\sqrt{34} from 4.
x=-\frac{\sqrt{34}}{2}+1
Divide 4-2\sqrt{34} by 4.
x=\frac{\sqrt{34}}{2}+1 x=-\frac{\sqrt{34}}{2}+1
The equation is now solved.
2x^{2}-3x-9=x+6
Use the distributive property to multiply x-3 by 2x+3 and combine like terms.
2x^{2}-3x-9-x=6
Subtract x from both sides.
2x^{2}-4x-9=6
Combine -3x and -x to get -4x.
2x^{2}-4x=6+9
Add 9 to both sides.
2x^{2}-4x=15
Add 6 and 9 to get 15.
\frac{2x^{2}-4x}{2}=\frac{15}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{15}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-2x=\frac{15}{2}
Divide -4 by 2.
x^{2}-2x+1=\frac{15}{2}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{17}{2}
Add \frac{15}{2} to 1.
\left(x-1\right)^{2}=\frac{17}{2}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{17}{2}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{34}}{2} x-1=-\frac{\sqrt{34}}{2}
Simplify.
x=\frac{\sqrt{34}}{2}+1 x=-\frac{\sqrt{34}}{2}+1
Add 1 to both sides of the equation.