Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(-x\right)+3x-3\left(-x\right)-9-x\left(x-4\right)=0
Apply the distributive property by multiplying each term of x-3 by each term of -x+3.
x\left(-x\right)+3x+3x-9-x\left(x-4\right)=0
Multiply -3 and -1 to get 3.
x\left(-x\right)+6x-9-x\left(x-4\right)=0
Combine 3x and 3x to get 6x.
x\left(-x\right)+6x-9-\left(x^{2}-4x\right)=0
Use the distributive property to multiply x by x-4.
x\left(-x\right)+6x-9-x^{2}-\left(-4x\right)=0
To find the opposite of x^{2}-4x, find the opposite of each term.
x\left(-x\right)+6x-9-x^{2}+4x=0
The opposite of -4x is 4x.
x\left(-x\right)+10x-9-x^{2}=0
Combine 6x and 4x to get 10x.
x^{2}\left(-1\right)+10x-9-x^{2}=0
Multiply x and x to get x^{2}.
-2x^{2}+10x-9=0
Combine x^{2}\left(-1\right) and -x^{2} to get -2x^{2}.
x=\frac{-10±\sqrt{10^{2}-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 10 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-2\right)\left(-9\right)}}{2\left(-2\right)}
Square 10.
x=\frac{-10±\sqrt{100+8\left(-9\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-10±\sqrt{100-72}}{2\left(-2\right)}
Multiply 8 times -9.
x=\frac{-10±\sqrt{28}}{2\left(-2\right)}
Add 100 to -72.
x=\frac{-10±2\sqrt{7}}{2\left(-2\right)}
Take the square root of 28.
x=\frac{-10±2\sqrt{7}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{7}-10}{-4}
Now solve the equation x=\frac{-10±2\sqrt{7}}{-4} when ± is plus. Add -10 to 2\sqrt{7}.
x=\frac{5-\sqrt{7}}{2}
Divide -10+2\sqrt{7} by -4.
x=\frac{-2\sqrt{7}-10}{-4}
Now solve the equation x=\frac{-10±2\sqrt{7}}{-4} when ± is minus. Subtract 2\sqrt{7} from -10.
x=\frac{\sqrt{7}+5}{2}
Divide -10-2\sqrt{7} by -4.
x=\frac{5-\sqrt{7}}{2} x=\frac{\sqrt{7}+5}{2}
The equation is now solved.
x\left(-x\right)+3x-3\left(-x\right)-9-x\left(x-4\right)=0
Apply the distributive property by multiplying each term of x-3 by each term of -x+3.
x\left(-x\right)+3x+3x-9-x\left(x-4\right)=0
Multiply -3 and -1 to get 3.
x\left(-x\right)+6x-9-x\left(x-4\right)=0
Combine 3x and 3x to get 6x.
x\left(-x\right)+6x-9-\left(x^{2}-4x\right)=0
Use the distributive property to multiply x by x-4.
x\left(-x\right)+6x-9-x^{2}-\left(-4x\right)=0
To find the opposite of x^{2}-4x, find the opposite of each term.
x\left(-x\right)+6x-9-x^{2}+4x=0
The opposite of -4x is 4x.
x\left(-x\right)+10x-9-x^{2}=0
Combine 6x and 4x to get 10x.
x\left(-x\right)+10x-x^{2}=9
Add 9 to both sides. Anything plus zero gives itself.
x^{2}\left(-1\right)+10x-x^{2}=9
Multiply x and x to get x^{2}.
-2x^{2}+10x=9
Combine x^{2}\left(-1\right) and -x^{2} to get -2x^{2}.
\frac{-2x^{2}+10x}{-2}=\frac{9}{-2}
Divide both sides by -2.
x^{2}+\frac{10}{-2}x=\frac{9}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-5x=\frac{9}{-2}
Divide 10 by -2.
x^{2}-5x=-\frac{9}{2}
Divide 9 by -2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{9}{2}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-\frac{9}{2}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{7}{4}
Add -\frac{9}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=\frac{7}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{7}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{7}}{2} x-\frac{5}{2}=-\frac{\sqrt{7}}{2}
Simplify.
x=\frac{\sqrt{7}+5}{2} x=\frac{5-\sqrt{7}}{2}
Add \frac{5}{2} to both sides of the equation.