Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-9x^{2}+27x-27=125
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
x^{3}-9x^{2}+27x-27-125=0
Subtract 125 from both sides.
x^{3}-9x^{2}+27x-152=0
Subtract 125 from -27 to get -152.
±152,±76,±38,±19,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -152 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=8
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-x+19=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-9x^{2}+27x-152 by x-8 to get x^{2}-x+19. Solve the equation where the result equals to 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 19}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -1 for b, and 19 for c in the quadratic formula.
x=\frac{1±\sqrt{-75}}{2}
Do the calculations.
x=\frac{-5i\sqrt{3}+1}{2} x=\frac{1+5i\sqrt{3}}{2}
Solve the equation x^{2}-x+19=0 when ± is plus and when ± is minus.
x=8 x=\frac{-5i\sqrt{3}+1}{2} x=\frac{1+5i\sqrt{3}}{2}
List all found solutions.
x^{3}-9x^{2}+27x-27=125
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
x^{3}-9x^{2}+27x-27-125=0
Subtract 125 from both sides.
x^{3}-9x^{2}+27x-152=0
Subtract 125 from -27 to get -152.
±152,±76,±38,±19,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -152 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=8
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-x+19=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-9x^{2}+27x-152 by x-8 to get x^{2}-x+19. Solve the equation where the result equals to 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 19}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -1 for b, and 19 for c in the quadratic formula.
x=\frac{1±\sqrt{-75}}{2}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=8
List all found solutions.