Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{3}-9x^{2}+27x-27=-64
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
x^{3}-9x^{2}+27x-27+64=0
Add 64 to both sides.
x^{3}-9x^{2}+27x+37=0
Add -27 and 64 to get 37.
±37,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 37 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-10x+37=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-9x^{2}+27x+37 by x+1 to get x^{2}-10x+37. Solve the equation where the result equals to 0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 1\times 37}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -10 for b, and 37 for c in the quadratic formula.
x=\frac{10±\sqrt{-48}}{2}
Do the calculations.
x=-2i\sqrt{3}+5 x=5+2i\sqrt{3}
Solve the equation x^{2}-10x+37=0 when ± is plus and when ± is minus.
x=-1 x=-2i\sqrt{3}+5 x=5+2i\sqrt{3}
List all found solutions.
x^{3}-9x^{2}+27x-27=-64
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-3\right)^{3}.
x^{3}-9x^{2}+27x-27+64=0
Add 64 to both sides.
x^{3}-9x^{2}+27x+37=0
Add -27 and 64 to get 37.
±37,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 37 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-10x+37=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-9x^{2}+27x+37 by x+1 to get x^{2}-10x+37. Solve the equation where the result equals to 0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 1\times 37}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -10 for b, and 37 for c in the quadratic formula.
x=\frac{10±\sqrt{-48}}{2}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=-1
List all found solutions.