Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9-25x^{2}+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-24x^{2}-6x+9+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine x^{2} and -25x^{2} to get -24x^{2}.
-24x^{2}+9=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine -6x and 6x to get 0.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+6x+12x^{2}+8x^{3}\right)+11
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+2x\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-1-6x-12x^{2}-8x^{3}+11
To find the opposite of 1+6x+12x^{2}+8x^{3}, find the opposite of each term.
-24x^{2}+9=8x^{3}-12x^{2}+6x-2-6x-12x^{2}-8x^{3}+11
Subtract 1 from -1 to get -2.
-24x^{2}+9=8x^{3}-12x^{2}-2-12x^{2}-8x^{3}+11
Combine 6x and -6x to get 0.
-24x^{2}+9=8x^{3}-24x^{2}-2-8x^{3}+11
Combine -12x^{2} and -12x^{2} to get -24x^{2}.
-24x^{2}+9=-24x^{2}-2+11
Combine 8x^{3} and -8x^{3} to get 0.
-24x^{2}+9=-24x^{2}+9
Add -2 and 11 to get 9.
-24x^{2}+9+24x^{2}=9
Add 24x^{2} to both sides.
9=9
Combine -24x^{2} and 24x^{2} to get 0.
\text{true}
Compare 9 and 9.
x\in \mathrm{C}
This is true for any x.
x^{2}-6x+9-25x^{2}+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-24x^{2}-6x+9+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine x^{2} and -25x^{2} to get -24x^{2}.
-24x^{2}+9=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine -6x and 6x to get 0.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+6x+12x^{2}+8x^{3}\right)+11
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+2x\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-1-6x-12x^{2}-8x^{3}+11
To find the opposite of 1+6x+12x^{2}+8x^{3}, find the opposite of each term.
-24x^{2}+9=8x^{3}-12x^{2}+6x-2-6x-12x^{2}-8x^{3}+11
Subtract 1 from -1 to get -2.
-24x^{2}+9=8x^{3}-12x^{2}-2-12x^{2}-8x^{3}+11
Combine 6x and -6x to get 0.
-24x^{2}+9=8x^{3}-24x^{2}-2-8x^{3}+11
Combine -12x^{2} and -12x^{2} to get -24x^{2}.
-24x^{2}+9=-24x^{2}-2+11
Combine 8x^{3} and -8x^{3} to get 0.
-24x^{2}+9=-24x^{2}+9
Add -2 and 11 to get 9.
-24x^{2}+9+24x^{2}=9
Add 24x^{2} to both sides.
9=9
Combine -24x^{2} and 24x^{2} to get 0.
\text{true}
Compare 9 and 9.
x\in \mathrm{R}
This is true for any x.