Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
x^{2}-6x+9-25x^{2}+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-24x^{2}-6x+9+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine x^{2} and -25x^{2} to get -24x^{2}.
-24x^{2}+9=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine -6x and 6x to get 0.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+6x+12x^{2}+8x^{3}\right)+11
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+2x\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-1-6x-12x^{2}-8x^{3}+11
To find the opposite of 1+6x+12x^{2}+8x^{3}, find the opposite of each term.
-24x^{2}+9=8x^{3}-12x^{2}+6x-2-6x-12x^{2}-8x^{3}+11
Subtract 1 from -1 to get -2.
-24x^{2}+9=8x^{3}-12x^{2}-2-12x^{2}-8x^{3}+11
Combine 6x and -6x to get 0.
-24x^{2}+9=8x^{3}-24x^{2}-2-8x^{3}+11
Combine -12x^{2} and -12x^{2} to get -24x^{2}.
-24x^{2}+9=-24x^{2}-2+11
Combine 8x^{3} and -8x^{3} to get 0.
-24x^{2}+9=-24x^{2}+9
Add -2 and 11 to get 9.
-24x^{2}+9+24x^{2}=9
Add 24x^{2} to both sides.
9=9
Combine -24x^{2} and 24x^{2} to get 0.
\text{true}
Compare 9 and 9.
x\in \mathrm{C}
This is true for any x.
x^{2}-6x+9-25x^{2}+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
-24x^{2}-6x+9+6x=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine x^{2} and -25x^{2} to get -24x^{2}.
-24x^{2}+9=\left(2x-1\right)^{3}-\left(1+2x\right)^{3}+11
Combine -6x and 6x to get 0.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+2x\right)^{3}+11
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-\left(1+6x+12x^{2}+8x^{3}\right)+11
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+2x\right)^{3}.
-24x^{2}+9=8x^{3}-12x^{2}+6x-1-1-6x-12x^{2}-8x^{3}+11
To find the opposite of 1+6x+12x^{2}+8x^{3}, find the opposite of each term.
-24x^{2}+9=8x^{3}-12x^{2}+6x-2-6x-12x^{2}-8x^{3}+11
Subtract 1 from -1 to get -2.
-24x^{2}+9=8x^{3}-12x^{2}-2-12x^{2}-8x^{3}+11
Combine 6x and -6x to get 0.
-24x^{2}+9=8x^{3}-24x^{2}-2-8x^{3}+11
Combine -12x^{2} and -12x^{2} to get -24x^{2}.
-24x^{2}+9=-24x^{2}-2+11
Combine 8x^{3} and -8x^{3} to get 0.
-24x^{2}+9=-24x^{2}+9
Add -2 and 11 to get 9.
-24x^{2}+9+24x^{2}=9
Add 24x^{2} to both sides.
9=9
Combine -24x^{2} and 24x^{2} to get 0.
\text{true}
Compare 9 and 9.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}