Solve for x
x=\frac{\sqrt{34}-5}{3}\approx 0.276983965
x=\frac{-\sqrt{34}-5}{3}\approx -3.610317298
Graph
Share
Copied to clipboard
x^{2}-6x+9-\left(2x+1\right)^{2}=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-\left(4x^{2}+4x+1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}-4x-1=5
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-3x^{2}-6x+9-4x-1=5
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-10x+9-1=5
Combine -6x and -4x to get -10x.
-3x^{2}-10x+8=5
Subtract 1 from 9 to get 8.
-3x^{2}-10x+8-5=0
Subtract 5 from both sides.
-3x^{2}-10x+3=0
Subtract 5 from 8 to get 3.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -10 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-10\right)±\sqrt{100+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-\left(-10\right)±\sqrt{136}}{2\left(-3\right)}
Add 100 to 36.
x=\frac{-\left(-10\right)±2\sqrt{34}}{2\left(-3\right)}
Take the square root of 136.
x=\frac{10±2\sqrt{34}}{2\left(-3\right)}
The opposite of -10 is 10.
x=\frac{10±2\sqrt{34}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{34}+10}{-6}
Now solve the equation x=\frac{10±2\sqrt{34}}{-6} when ± is plus. Add 10 to 2\sqrt{34}.
x=\frac{-\sqrt{34}-5}{3}
Divide 10+2\sqrt{34} by -6.
x=\frac{10-2\sqrt{34}}{-6}
Now solve the equation x=\frac{10±2\sqrt{34}}{-6} when ± is minus. Subtract 2\sqrt{34} from 10.
x=\frac{\sqrt{34}-5}{3}
Divide 10-2\sqrt{34} by -6.
x=\frac{-\sqrt{34}-5}{3} x=\frac{\sqrt{34}-5}{3}
The equation is now solved.
x^{2}-6x+9-\left(2x+1\right)^{2}=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-\left(4x^{2}+4x+1\right)=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}-4x-1=5
To find the opposite of 4x^{2}+4x+1, find the opposite of each term.
-3x^{2}-6x+9-4x-1=5
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-10x+9-1=5
Combine -6x and -4x to get -10x.
-3x^{2}-10x+8=5
Subtract 1 from 9 to get 8.
-3x^{2}-10x=5-8
Subtract 8 from both sides.
-3x^{2}-10x=-3
Subtract 8 from 5 to get -3.
\frac{-3x^{2}-10x}{-3}=-\frac{3}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{10}{-3}\right)x=-\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{10}{3}x=-\frac{3}{-3}
Divide -10 by -3.
x^{2}+\frac{10}{3}x=1
Divide -3 by -3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=1+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=1+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{34}{9}
Add 1 to \frac{25}{9}.
\left(x+\frac{5}{3}\right)^{2}=\frac{34}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{34}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{\sqrt{34}}{3} x+\frac{5}{3}=-\frac{\sqrt{34}}{3}
Simplify.
x=\frac{\sqrt{34}-5}{3} x=\frac{-\sqrt{34}-5}{3}
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}