Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9=x-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-x=-2
Subtract x from both sides.
x^{2}-7x+9=-2
Combine -6x and -x to get -7x.
x^{2}-7x+9+2=0
Add 2 to both sides.
x^{2}-7x+11=0
Add 9 and 2 to get 11.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 11}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 11}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-44}}{2}
Multiply -4 times 11.
x=\frac{-\left(-7\right)±\sqrt{5}}{2}
Add 49 to -44.
x=\frac{7±\sqrt{5}}{2}
The opposite of -7 is 7.
x=\frac{\sqrt{5}+7}{2}
Now solve the equation x=\frac{7±\sqrt{5}}{2} when ± is plus. Add 7 to \sqrt{5}.
x=\frac{7-\sqrt{5}}{2}
Now solve the equation x=\frac{7±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 7.
x=\frac{\sqrt{5}+7}{2} x=\frac{7-\sqrt{5}}{2}
The equation is now solved.
x^{2}-6x+9=x-2
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9-x=-2
Subtract x from both sides.
x^{2}-7x+9=-2
Combine -6x and -x to get -7x.
x^{2}-7x=-2-9
Subtract 9 from both sides.
x^{2}-7x=-11
Subtract 9 from -2 to get -11.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-11+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-11+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{5}{4}
Add -11 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{5}}{2} x-\frac{7}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}+7}{2} x=\frac{7-\sqrt{5}}{2}
Add \frac{7}{2} to both sides of the equation.