Solve for x
x=\frac{2}{3}\approx 0.666666667
x=-4
Graph
Share
Copied to clipboard
x^{2}-6x+9=\left(2x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
-3x^{2}-6x+9=4x+1
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-6x+9-4x=1
Subtract 4x from both sides.
-3x^{2}-10x+9=1
Combine -6x and -4x to get -10x.
-3x^{2}-10x+9-1=0
Subtract 1 from both sides.
-3x^{2}-10x+8=0
Subtract 1 from 9 to get 8.
a+b=-10 ab=-3\times 8=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
1,-24 2,-12 3,-8 4,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Calculate the sum for each pair.
a=2 b=-12
The solution is the pair that gives sum -10.
\left(-3x^{2}+2x\right)+\left(-12x+8\right)
Rewrite -3x^{2}-10x+8 as \left(-3x^{2}+2x\right)+\left(-12x+8\right).
-x\left(3x-2\right)-4\left(3x-2\right)
Factor out -x in the first and -4 in the second group.
\left(3x-2\right)\left(-x-4\right)
Factor out common term 3x-2 by using distributive property.
x=\frac{2}{3} x=-4
To find equation solutions, solve 3x-2=0 and -x-4=0.
x^{2}-6x+9=\left(2x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
-3x^{2}-6x+9=4x+1
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-6x+9-4x=1
Subtract 4x from both sides.
-3x^{2}-10x+9=1
Combine -6x and -4x to get -10x.
-3x^{2}-10x+9-1=0
Subtract 1 from both sides.
-3x^{2}-10x+8=0
Subtract 1 from 9 to get 8.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -10 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\left(-3\right)}
Multiply 12 times 8.
x=\frac{-\left(-10\right)±\sqrt{196}}{2\left(-3\right)}
Add 100 to 96.
x=\frac{-\left(-10\right)±14}{2\left(-3\right)}
Take the square root of 196.
x=\frac{10±14}{2\left(-3\right)}
The opposite of -10 is 10.
x=\frac{10±14}{-6}
Multiply 2 times -3.
x=\frac{24}{-6}
Now solve the equation x=\frac{10±14}{-6} when ± is plus. Add 10 to 14.
x=-4
Divide 24 by -6.
x=-\frac{4}{-6}
Now solve the equation x=\frac{10±14}{-6} when ± is minus. Subtract 14 from 10.
x=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
x=-4 x=\frac{2}{3}
The equation is now solved.
x^{2}-6x+9=\left(2x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9=4x^{2}+4x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}=4x+1
Subtract 4x^{2} from both sides.
-3x^{2}-6x+9=4x+1
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-6x+9-4x=1
Subtract 4x from both sides.
-3x^{2}-10x+9=1
Combine -6x and -4x to get -10x.
-3x^{2}-10x=1-9
Subtract 9 from both sides.
-3x^{2}-10x=-8
Subtract 9 from 1 to get -8.
\frac{-3x^{2}-10x}{-3}=-\frac{8}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{10}{-3}\right)x=-\frac{8}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{10}{3}x=-\frac{8}{-3}
Divide -10 by -3.
x^{2}+\frac{10}{3}x=\frac{8}{3}
Divide -8 by -3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
Add \frac{8}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{3}\right)^{2}=\frac{49}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{7}{3} x+\frac{5}{3}=-\frac{7}{3}
Simplify.
x=\frac{2}{3} x=-4
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}