Solve for x
x=\frac{1}{2}=0.5
x=1
Graph
Share
Copied to clipboard
x^{2}-6x+9+x\left(x+5\right)=8+2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+5x=8+2x
Use the distributive property to multiply x by x+5.
2x^{2}-6x+9+5x=8+2x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-x+9=8+2x
Combine -6x and 5x to get -x.
2x^{2}-x+9-8=2x
Subtract 8 from both sides.
2x^{2}-x+1=2x
Subtract 8 from 9 to get 1.
2x^{2}-x+1-2x=0
Subtract 2x from both sides.
2x^{2}-3x+1=0
Combine -x and -2x to get -3x.
a+b=-3 ab=2\times 1=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(2x^{2}-2x\right)+\left(-x+1\right)
Rewrite 2x^{2}-3x+1 as \left(2x^{2}-2x\right)+\left(-x+1\right).
2x\left(x-1\right)-\left(x-1\right)
Factor out 2x in the first and -1 in the second group.
\left(x-1\right)\left(2x-1\right)
Factor out common term x-1 by using distributive property.
x=1 x=\frac{1}{2}
To find equation solutions, solve x-1=0 and 2x-1=0.
x^{2}-6x+9+x\left(x+5\right)=8+2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+5x=8+2x
Use the distributive property to multiply x by x+5.
2x^{2}-6x+9+5x=8+2x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-x+9=8+2x
Combine -6x and 5x to get -x.
2x^{2}-x+9-8=2x
Subtract 8 from both sides.
2x^{2}-x+1=2x
Subtract 8 from 9 to get 1.
2x^{2}-x+1-2x=0
Subtract 2x from both sides.
2x^{2}-3x+1=0
Combine -x and -2x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{1}}{2\times 2}
Add 9 to -8.
x=\frac{-\left(-3\right)±1}{2\times 2}
Take the square root of 1.
x=\frac{3±1}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±1}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{3±1}{4} when ± is plus. Add 3 to 1.
x=1
Divide 4 by 4.
x=\frac{2}{4}
Now solve the equation x=\frac{3±1}{4} when ± is minus. Subtract 1 from 3.
x=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x=1 x=\frac{1}{2}
The equation is now solved.
x^{2}-6x+9+x\left(x+5\right)=8+2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+5x=8+2x
Use the distributive property to multiply x by x+5.
2x^{2}-6x+9+5x=8+2x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-x+9=8+2x
Combine -6x and 5x to get -x.
2x^{2}-x+9-2x=8
Subtract 2x from both sides.
2x^{2}-3x+9=8
Combine -x and -2x to get -3x.
2x^{2}-3x=8-9
Subtract 9 from both sides.
2x^{2}-3x=-1
Subtract 9 from 8 to get -1.
\frac{2x^{2}-3x}{2}=-\frac{1}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=-\frac{1}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{1}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{16}
Add -\frac{1}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{1}{4} x-\frac{3}{4}=-\frac{1}{4}
Simplify.
x=1 x=\frac{1}{2}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}