Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9+5x^{2}=\left(2x+1\right)^{2}-x-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
6x^{2}-6x+9=\left(2x+1\right)^{2}-x-1
Combine x^{2} and 5x^{2} to get 6x^{2}.
6x^{2}-6x+9=4x^{2}+4x+1-x-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
6x^{2}-6x+9=4x^{2}+3x+1-1
Combine 4x and -x to get 3x.
6x^{2}-6x+9=4x^{2}+3x
Subtract 1 from 1 to get 0.
6x^{2}-6x+9-4x^{2}=3x
Subtract 4x^{2} from both sides.
2x^{2}-6x+9=3x
Combine 6x^{2} and -4x^{2} to get 2x^{2}.
2x^{2}-6x+9-3x=0
Subtract 3x from both sides.
2x^{2}-9x+9=0
Combine -6x and -3x to get -9x.
a+b=-9 ab=2\times 9=18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-6 b=-3
The solution is the pair that gives sum -9.
\left(2x^{2}-6x\right)+\left(-3x+9\right)
Rewrite 2x^{2}-9x+9 as \left(2x^{2}-6x\right)+\left(-3x+9\right).
2x\left(x-3\right)-3\left(x-3\right)
Factor out 2x in the first and -3 in the second group.
\left(x-3\right)\left(2x-3\right)
Factor out common term x-3 by using distributive property.
x=3 x=\frac{3}{2}
To find equation solutions, solve x-3=0 and 2x-3=0.
x^{2}-6x+9+5x^{2}=\left(2x+1\right)^{2}-x-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
6x^{2}-6x+9=\left(2x+1\right)^{2}-x-1
Combine x^{2} and 5x^{2} to get 6x^{2}.
6x^{2}-6x+9=4x^{2}+4x+1-x-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
6x^{2}-6x+9=4x^{2}+3x+1-1
Combine 4x and -x to get 3x.
6x^{2}-6x+9=4x^{2}+3x
Subtract 1 from 1 to get 0.
6x^{2}-6x+9-4x^{2}=3x
Subtract 4x^{2} from both sides.
2x^{2}-6x+9=3x
Combine 6x^{2} and -4x^{2} to get 2x^{2}.
2x^{2}-6x+9-3x=0
Subtract 3x from both sides.
2x^{2}-9x+9=0
Combine -6x and -3x to get -9x.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\times 9}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -9 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\times 9}}{2\times 2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-8\times 9}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-9\right)±\sqrt{81-72}}{2\times 2}
Multiply -8 times 9.
x=\frac{-\left(-9\right)±\sqrt{9}}{2\times 2}
Add 81 to -72.
x=\frac{-\left(-9\right)±3}{2\times 2}
Take the square root of 9.
x=\frac{9±3}{2\times 2}
The opposite of -9 is 9.
x=\frac{9±3}{4}
Multiply 2 times 2.
x=\frac{12}{4}
Now solve the equation x=\frac{9±3}{4} when ± is plus. Add 9 to 3.
x=3
Divide 12 by 4.
x=\frac{6}{4}
Now solve the equation x=\frac{9±3}{4} when ± is minus. Subtract 3 from 9.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x=3 x=\frac{3}{2}
The equation is now solved.
x^{2}-6x+9+5x^{2}=\left(2x+1\right)^{2}-x-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
6x^{2}-6x+9=\left(2x+1\right)^{2}-x-1
Combine x^{2} and 5x^{2} to get 6x^{2}.
6x^{2}-6x+9=4x^{2}+4x+1-x-1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
6x^{2}-6x+9=4x^{2}+3x+1-1
Combine 4x and -x to get 3x.
6x^{2}-6x+9=4x^{2}+3x
Subtract 1 from 1 to get 0.
6x^{2}-6x+9-4x^{2}=3x
Subtract 4x^{2} from both sides.
2x^{2}-6x+9=3x
Combine 6x^{2} and -4x^{2} to get 2x^{2}.
2x^{2}-6x+9-3x=0
Subtract 3x from both sides.
2x^{2}-9x+9=0
Combine -6x and -3x to get -9x.
2x^{2}-9x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-9x}{2}=-\frac{9}{2}
Divide both sides by 2.
x^{2}-\frac{9}{2}x=-\frac{9}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{9}{2}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{9}{2}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{9}{16}
Add -\frac{9}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{3}{4} x-\frac{9}{4}=-\frac{3}{4}
Simplify.
x=3 x=\frac{3}{2}
Add \frac{9}{4} to both sides of the equation.