Solve for y
y=-\frac{\left(x-3\right)^{2}}{10}-\frac{5}{2}
Solve for x (complex solution)
x=-\sqrt{-10y-25}+3
x=\sqrt{-10y-25}+3
Solve for x
x=-\sqrt{-10y-25}+3
x=\sqrt{-10y-25}+3\text{, }y\leq -\frac{5}{2}
Graph
Share
Copied to clipboard
x^{2}-6x+9+\left(y+5\right)^{2}=y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+y^{2}+10y+25=y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+5\right)^{2}.
x^{2}-6x+34+y^{2}+10y=y^{2}
Add 9 and 25 to get 34.
x^{2}-6x+34+y^{2}+10y-y^{2}=0
Subtract y^{2} from both sides.
x^{2}-6x+34+10y=0
Combine y^{2} and -y^{2} to get 0.
-6x+34+10y=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
34+10y=-x^{2}+6x
Add 6x to both sides.
10y=-x^{2}+6x-34
Subtract 34 from both sides.
\frac{10y}{10}=\frac{-x^{2}+6x-34}{10}
Divide both sides by 10.
y=\frac{-x^{2}+6x-34}{10}
Dividing by 10 undoes the multiplication by 10.
y=-\frac{x^{2}}{10}+\frac{3x}{5}-\frac{17}{5}
Divide -x^{2}+6x-34 by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}