Solve for x
x=3
x=15
Graph
Share
Copied to clipboard
x^{2}-6x+9+\left(x-6\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}-12x+36=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-6x+9-12x+36=x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-18x+9+36=x^{2}
Combine -6x and -12x to get -18x.
2x^{2}-18x+45=x^{2}
Add 9 and 36 to get 45.
2x^{2}-18x+45-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-18x+45=0
Combine 2x^{2} and -x^{2} to get x^{2}.
a+b=-18 ab=45
To solve the equation, factor x^{2}-18x+45 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-15 b=-3
The solution is the pair that gives sum -18.
\left(x-15\right)\left(x-3\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=15 x=3
To find equation solutions, solve x-15=0 and x-3=0.
x^{2}-6x+9+\left(x-6\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}-12x+36=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-6x+9-12x+36=x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-18x+9+36=x^{2}
Combine -6x and -12x to get -18x.
2x^{2}-18x+45=x^{2}
Add 9 and 36 to get 45.
2x^{2}-18x+45-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-18x+45=0
Combine 2x^{2} and -x^{2} to get x^{2}.
a+b=-18 ab=1\times 45=45
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+45. To find a and b, set up a system to be solved.
-1,-45 -3,-15 -5,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 45.
-1-45=-46 -3-15=-18 -5-9=-14
Calculate the sum for each pair.
a=-15 b=-3
The solution is the pair that gives sum -18.
\left(x^{2}-15x\right)+\left(-3x+45\right)
Rewrite x^{2}-18x+45 as \left(x^{2}-15x\right)+\left(-3x+45\right).
x\left(x-15\right)-3\left(x-15\right)
Factor out x in the first and -3 in the second group.
\left(x-15\right)\left(x-3\right)
Factor out common term x-15 by using distributive property.
x=15 x=3
To find equation solutions, solve x-15=0 and x-3=0.
x^{2}-6x+9+\left(x-6\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}-12x+36=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-6x+9-12x+36=x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-18x+9+36=x^{2}
Combine -6x and -12x to get -18x.
2x^{2}-18x+45=x^{2}
Add 9 and 36 to get 45.
2x^{2}-18x+45-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-18x+45=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 45}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -18 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 45}}{2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-180}}{2}
Multiply -4 times 45.
x=\frac{-\left(-18\right)±\sqrt{144}}{2}
Add 324 to -180.
x=\frac{-\left(-18\right)±12}{2}
Take the square root of 144.
x=\frac{18±12}{2}
The opposite of -18 is 18.
x=\frac{30}{2}
Now solve the equation x=\frac{18±12}{2} when ± is plus. Add 18 to 12.
x=15
Divide 30 by 2.
x=\frac{6}{2}
Now solve the equation x=\frac{18±12}{2} when ± is minus. Subtract 12 from 18.
x=3
Divide 6 by 2.
x=15 x=3
The equation is now solved.
x^{2}-6x+9+\left(x-6\right)^{2}=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}-12x+36=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
2x^{2}-6x+9-12x+36=x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-18x+9+36=x^{2}
Combine -6x and -12x to get -18x.
2x^{2}-18x+45=x^{2}
Add 9 and 36 to get 45.
2x^{2}-18x+45-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-18x+45=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-18x=-45
Subtract 45 from both sides. Anything subtracted from zero gives its negation.
x^{2}-18x+\left(-9\right)^{2}=-45+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=-45+81
Square -9.
x^{2}-18x+81=36
Add -45 to 81.
\left(x-9\right)^{2}=36
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{36}
Take the square root of both sides of the equation.
x-9=6 x-9=-6
Simplify.
x=15 x=3
Add 9 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}