Solve for x (complex solution)
x=2+i
x=2-i
Graph
Share
Copied to clipboard
x^{2}-6x+9+\left(x-1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}-2x+1=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-6x+9-2x+1=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+9+1=0
Combine -6x and -2x to get -8x.
2x^{2}-8x+10=0
Add 9 and 1 to get 10.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 10}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 10}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\times 10}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64-80}}{2\times 2}
Multiply -8 times 10.
x=\frac{-\left(-8\right)±\sqrt{-16}}{2\times 2}
Add 64 to -80.
x=\frac{-\left(-8\right)±4i}{2\times 2}
Take the square root of -16.
x=\frac{8±4i}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±4i}{4}
Multiply 2 times 2.
x=\frac{8+4i}{4}
Now solve the equation x=\frac{8±4i}{4} when ± is plus. Add 8 to 4i.
x=2+i
Divide 8+4i by 4.
x=\frac{8-4i}{4}
Now solve the equation x=\frac{8±4i}{4} when ± is minus. Subtract 4i from 8.
x=2-i
Divide 8-4i by 4.
x=2+i x=2-i
The equation is now solved.
x^{2}-6x+9+\left(x-1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}-2x+1=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-6x+9-2x+1=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-8x+9+1=0
Combine -6x and -2x to get -8x.
2x^{2}-8x+10=0
Add 9 and 1 to get 10.
2x^{2}-8x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}-8x}{2}=-\frac{10}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{10}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=-\frac{10}{2}
Divide -8 by 2.
x^{2}-4x=-5
Divide -10 by 2.
x^{2}-4x+\left(-2\right)^{2}=-5+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-5+4
Square -2.
x^{2}-4x+4=-1
Add -5 to 4.
\left(x-2\right)^{2}=-1
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-2=i x-2=-i
Simplify.
x=2+i x=2-i
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}