Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-6x+9+\left(x+4\right)^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+8x+16=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
2x^{2}-6x+9+8x+16=16
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+9+16=16
Combine -6x and 8x to get 2x.
2x^{2}+2x+25=16
Add 9 and 16 to get 25.
2x^{2}+2x+25-16=0
Subtract 16 from both sides.
2x^{2}+2x+9=0
Subtract 16 from 25 to get 9.
x=\frac{-2±\sqrt{2^{2}-4\times 2\times 9}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\times 9}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\times 9}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4-72}}{2\times 2}
Multiply -8 times 9.
x=\frac{-2±\sqrt{-68}}{2\times 2}
Add 4 to -72.
x=\frac{-2±2\sqrt{17}i}{2\times 2}
Take the square root of -68.
x=\frac{-2±2\sqrt{17}i}{4}
Multiply 2 times 2.
x=\frac{-2+2\sqrt{17}i}{4}
Now solve the equation x=\frac{-2±2\sqrt{17}i}{4} when ± is plus. Add -2 to 2i\sqrt{17}.
x=\frac{-1+\sqrt{17}i}{2}
Divide -2+2i\sqrt{17} by 4.
x=\frac{-2\sqrt{17}i-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{17}i}{4} when ± is minus. Subtract 2i\sqrt{17} from -2.
x=\frac{-\sqrt{17}i-1}{2}
Divide -2-2i\sqrt{17} by 4.
x=\frac{-1+\sqrt{17}i}{2} x=\frac{-\sqrt{17}i-1}{2}
The equation is now solved.
x^{2}-6x+9+\left(x+4\right)^{2}=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}-6x+9+x^{2}+8x+16=16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
2x^{2}-6x+9+8x+16=16
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+2x+9+16=16
Combine -6x and 8x to get 2x.
2x^{2}+2x+25=16
Add 9 and 16 to get 25.
2x^{2}+2x=16-25
Subtract 25 from both sides.
2x^{2}+2x=-9
Subtract 25 from 16 to get -9.
\frac{2x^{2}+2x}{2}=-\frac{9}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=-\frac{9}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=-\frac{9}{2}
Divide 2 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{9}{2}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-\frac{9}{2}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{17}{4}
Add -\frac{9}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=-\frac{17}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{17}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{17}i}{2} x+\frac{1}{2}=-\frac{\sqrt{17}i}{2}
Simplify.
x=\frac{-1+\sqrt{17}i}{2} x=\frac{-\sqrt{17}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.