Solve for x
x=8
Graph
Share
Copied to clipboard
\frac{x-3}{1.5}=\frac{80}{24}
Expand \frac{8}{2.4} by multiplying both numerator and the denominator by 10.
\frac{x-3}{1.5}=\frac{10}{3}
Reduce the fraction \frac{80}{24} to lowest terms by extracting and canceling out 8.
\frac{x}{1.5}+\frac{-3}{1.5}=\frac{10}{3}
Divide each term of x-3 by 1.5 to get \frac{x}{1.5}+\frac{-3}{1.5}.
\frac{x}{1.5}+\frac{-30}{15}=\frac{10}{3}
Expand \frac{-3}{1.5} by multiplying both numerator and the denominator by 10.
\frac{x}{1.5}-2=\frac{10}{3}
Divide -30 by 15 to get -2.
\frac{x}{1.5}=\frac{10}{3}+2
Add 2 to both sides.
\frac{x}{1.5}=\frac{10}{3}+\frac{6}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{x}{1.5}=\frac{10+6}{3}
Since \frac{10}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{x}{1.5}=\frac{16}{3}
Add 10 and 6 to get 16.
x=\frac{16}{3}\times 1.5
Multiply both sides by 1.5.
x=\frac{16}{3}\times \frac{3}{2}
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
x=\frac{16\times 3}{3\times 2}
Multiply \frac{16}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{16}{2}
Cancel out 3 in both numerator and denominator.
x=8
Divide 16 by 2 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}