Evaluate
\left(x+\left(-3-3i\right)\right)\left(x+\left(-3+3i\right)\right)
Expand
x^{2}-6x+18
Share
Copied to clipboard
x^{2}-3x-3ix-3x+9+9i+3ix-9i+9
Apply the distributive property by multiplying each term of x-3+3i by each term of x-3-3i.
x^{2}-3x-3ix-3x+3ix+9+9+\left(9-9\right)i
Combine the real and imaginary parts.
x^{2}-3x-3ix-3x+3ix+18
Do the additions.
x^{2}+\left(-3-3i\right)x-3x+3ix+18
Combine -3x and -3ix to get \left(-3-3i\right)x.
x^{2}+\left(-6-3i\right)x+3ix+18
Combine \left(-3-3i\right)x and -3x to get \left(-6-3i\right)x.
x^{2}-6x+18
Combine \left(-6-3i\right)x and 3ix to get -6x.
x^{2}-3x-3ix-3x+9+9i+3ix-9i+9
Apply the distributive property by multiplying each term of x-3+3i by each term of x-3-3i.
x^{2}-3x-3ix-3x+3ix+9+9+\left(9-9\right)i
Combine the real and imaginary parts.
x^{2}-3x-3ix-3x+3ix+18
Do the additions.
x^{2}+\left(-3-3i\right)x-3x+3ix+18
Combine -3x and -3ix to get \left(-3-3i\right)x.
x^{2}+\left(-6-3i\right)x+3ix+18
Combine \left(-3-3i\right)x and -3x to get \left(-6-3i\right)x.
x^{2}-6x+18
Combine \left(-6-3i\right)x and 3ix to get -6x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}